When Moving-Average Models Meet High-Frequency Data: Uniform Inference on Volatility

Author(s):  
Rui Da ◽  
Dacheng Xiu

Econometrica ◽  
2021 ◽  
Vol 89 (6) ◽  
pp. 2787-2825 ◽  
Author(s):  
Rui Da ◽  
Dacheng Xiu

We conduct inference on volatility with noisy high‐frequency data. We assume the observed transaction price follows a continuous‐time Itô‐semimartingale, contaminated by a discrete‐time moving‐average noise process associated with the arrival of trades. We estimate volatility, defined as the quadratic variation of the semimartingale, by maximizing the likelihood of a misspecified moving‐average model, with its order selected based on an information criterion. Our inference is uniformly valid over a large class of noise processes whose magnitude and dependence structure vary with sample size. We show that the convergence rate of our estimator dominates n 1/4 as noise vanishes, and is determined by the selected order of noise dependence when noise is sufficiently small. Our implementation guarantees positive estimates in finite samples.



Author(s):  
Gilles O. Zumbach ◽  
Fulvio Corsi ◽  
Adrian Trapletti


2017 ◽  
Author(s):  
Rim mname Lamouchi ◽  
Russell mname Davidson ◽  
Ibrahim mname Fatnassi ◽  
Abderazak Ben mname Maatoug




Sign in / Sign up

Export Citation Format

Share Document