scholarly journals When Moving‐Average Models Meet High‐Frequency Data: Uniform Inference on Volatility

Econometrica ◽  
2021 ◽  
Vol 89 (6) ◽  
pp. 2787-2825 ◽  
Author(s):  
Rui Da ◽  
Dacheng Xiu

We conduct inference on volatility with noisy high‐frequency data. We assume the observed transaction price follows a continuous‐time Itô‐semimartingale, contaminated by a discrete‐time moving‐average noise process associated with the arrival of trades. We estimate volatility, defined as the quadratic variation of the semimartingale, by maximizing the likelihood of a misspecified moving‐average model, with its order selected based on an information criterion. Our inference is uniformly valid over a large class of noise processes whose magnitude and dependence structure vary with sample size. We show that the convergence rate of our estimator dominates n 1/4 as noise vanishes, and is determined by the selected order of noise dependence when noise is sufficiently small. Our implementation guarantees positive estimates in finite samples.

2016 ◽  
Vol 6 (3) ◽  
pp. 264-283 ◽  
Author(s):  
Mingyuan Guo ◽  
Xu Wang

Purpose – The purpose of this paper is to analyse the dependence structure in volatility between Shanghai and Shenzhen stock market in China based on high-frequency data. Design/methodology/approach – Using a multiplicative error model (hereinafter MEM) to describe the margins in volatility of China’s Shanghai and Shenzhen stock market, this study adopts static and time-varying copulas, respectively, estimated by maximum likelihood estimation method to describe the dependence structure in volatility between Shanghai and Shenzhen stock market in China. Findings – This paper has identified the asymmetrical dependence structure in financial market volatility more precisely. Gumbel copula could best fit the empirical distribution as it can capture the relatively high dependence degree in the upper tail part corresponding to the period of volatile price fluctuation in both static and dynamic view. Originality/value – Previous scholars mostly use GARCH model to describe the margins for price volatility. As MEM can efficiently characterize the volatility estimators, this paper uses MEM to model the margins for the market volatility directly based on high-frequency data, and proposes a proper distribution for the innovation in the marginal models. Then we could use copula-MEM other than copula-GARCH model to study on the dependence structure in volatility between Shanghai and Shenzhen stock market in China from a microstructural perspective.


2021 ◽  
Vol 14 (4) ◽  
pp. 145
Author(s):  
Makoto Nakakita ◽  
Teruo Nakatsuma

Intraday high-frequency data of stock returns exhibit not only typical characteristics (e.g., volatility clustering and the leverage effect) but also a cyclical pattern of return volatility that is known as intraday seasonality. In this paper, we extend the stochastic volatility (SV) model for application with such intraday high-frequency data and develop an efficient Markov chain Monte Carlo (MCMC) sampling algorithm for Bayesian inference of the proposed model. Our modeling strategy is two-fold. First, we model the intraday seasonality of return volatility as a Bernstein polynomial and estimate it along with the stochastic volatility simultaneously. Second, we incorporate skewness and excess kurtosis of stock returns into the SV model by assuming that the error term follows a family of generalized hyperbolic distributions, including variance-gamma and Student’s t distributions. To improve efficiency of MCMC implementation, we apply an ancillarity-sufficiency interweaving strategy (ASIS) and generalized Gibbs sampling. As a demonstration of our new method, we estimate intraday SV models with 1 min return data of a stock price index (TOPIX) and conduct model selection among various specifications with the widely applicable information criterion (WAIC). The result shows that the SV model with the skew variance-gamma error is the best among the candidates.


2017 ◽  
Author(s):  
Rim mname Lamouchi ◽  
Russell mname Davidson ◽  
Ibrahim mname Fatnassi ◽  
Abderazak Ben mname Maatoug

Sign in / Sign up

Export Citation Format

Share Document