Injectable Nucleus Pulposus Derived-ECM Hydrogel Functionalised with Chondroitin Sulfate for Intervertebral Disc Regeneration

2020 ◽  
Author(s):  
Chiara Borrell ◽  
Conor T. Buckley
2020 ◽  
Vol 35 (2) ◽  
pp. 182-192 ◽  
Author(s):  
Lei Yu ◽  
Zi-Jie Sun ◽  
Quan-Chang Tan ◽  
Shuang Wang ◽  
Wei-Heng Wang ◽  
...  

Extracellular matrix loss is one of the early manifestations of intervertebral disc degeneration. Stem cell-based tissue engineering creates an appropriate microenvironment for long term cell survival, promising for NP regeneration. We created a decellularized nucleus pulposus hydrogel (DNPH) from fresh bovine nucleus pulposus. Decellularization removed NP cells effectively, while highly preserving their structures and major biochemical components, such as glycosaminoglycan and collagen II. DNPH could be gelled as a uniform grid structure in situ at 37°C for 30 min. Adding adipose marrow-derived mesenchymal stem cells into the hydrogel for three-dimensional culture resulted in good bioactivity and biocompatibility in vitro. Meanwhile, NP-related gene expression significantly increased without the addition of exogenous biological factors. In summary, the thermosensitive and injectable hydrogel, which has low toxicity and inducible differentiation, could serve as a bio-scaffold, bio-carrier, and three-dimensional culture system. Therefore, DNPH has an outstanding potential for intervertebral disc regeneration.


Sign in / Sign up

Export Citation Format

Share Document