nucleus pulposus
Recently Published Documents





2022 ◽  
Remy E Walk ◽  
Hong Joo Moon ◽  
Simon Y Tang ◽  
Munish C Gupta

Study Design: Preclinical animal study. Objective: Evaluation of the degenerative progression resulting from either a partial- or full- width injury to the mouse lumbar intervertebral disc (IVD) using contrast-enhanced micro-computed tomography and histological analyses. We utilized a lateral-retroperitoneal surgical approach to access the lumbar IVD, and the injuries to the IVD were induced by either incising one side of the annulus fibrosus or puncturing both sides of the annulus fibrosus. The full-width injury caused dramatic reduction in nucleus pulposus hydration and significant degeneration. A partial-width injury produces localized deterioration around the annulus fibrosus site that resulted in local tissue remodeling without gross degeneration to the IVD. Methods: Female C57BL/6J mice of 3-4 months age were used in this study. They were divided into three groups to undergo a partial-width, full-width, or sham injuries. The L5/L6 and L6/S1 lumbar IVDs were surgically exposed using a lateral-retroperitoneal approach. The L6/S1 IVDs were injured using either a surgical scalpel (partial-width) or a 33G needle (full-width), with the L5/L6 serving as an internal control. These animals were allowed to recover and then sacrificed at 2-, 4-, or 8- weeks post-surgery. The IVDs were assessed for degeneration using contrast-enhanced microCT (CEμCT) and histological analysis. Results: The high-resolution 3D evaluation of the IVD confirmed that the respective injuries localized within one side of the annulus fibrosus or spanned the full width of the IVD. The full-width injury caused deteriorations in the nucleus pulposus after 2 weeks that culminated in significant degeneration at 8 weeks, while the partial width injury caused localized disruptions that remained limited to the annulus fibrosus. Conclusion: The use of CEμCT revealed distinct IVD degeneration profiles resulting from partial- and full- width injuries. The partial width injury may serve as a better model for IVD degeneration resulting from localized annulus fibrosus injuries in humans.

Chenglong Xie ◽  
Yifeng Shi ◽  
Zuoxi Chen ◽  
Xin Zhou ◽  
Peng Luo ◽  

Oxidative stress–induced apoptosis and senescence of nucleus pulposus (NP) cells play a crucial role in the progression of intervertebral disc degeneration (IVDD). Accumulation of studies has shown that activated autophagy and enhanced autophagic flux can alleviate IVDD. In this study, we explored the effects of apigenin on IVDD in vitro and in vivo. Apigenin was found to inhibit tert-butyl hydroperoxide (TBHP)–induced apoptosis, senescence, and ECM degradation in NP cells. In addition, apigenin treatment can restore the autophagic flux blockage caused by TBHP. Mechanistically, we found that TBHP may induce autophagosome and lysosome fusion interruption and lysosomal dysfunction, while apigenin alleviates these phenomena by promoting the nuclear translocation of TFEB via the AMPK/mTOR signaling pathway. Furthermore, apigenin also exerts a protective effect against the progression of IVDD in the puncture-induced rat model. Taken together, these findings indicate that apigenin protects NP cells against TBHP-induced apoptosis, senescence, and ECM degradation via restoration of autophagic flux in vitro, and it also ameliorates IVDD progression in rats in vivo, demonstrating its potential for serving as an effective therapeutic agent for IVDD.

2022 ◽  
Vol 27 (1) ◽  
Kun Zhu ◽  
Rui Zhao ◽  
Yuchen Ye ◽  
Gang Xu ◽  
Changchun Zhang

Abstract Background Intervertebral disc degeneration (IDD) is a natural progression of age-related processes. Associated with IDD, degenerative disc disease (DDD) is a pathologic condition implicated as a major cause of chronic lower back pain, which can have a severe impact on the quality of life of patients. As degeneration progression is associated with elevated levels of inflammatory cytokines, enhanced aggrecan and collagen degradation, and changes in the disc cell phenotype. The purpose of this study was to investigate the biological and cytological characteristics of rabbit nucleus pulposus mesenchymal stem cells (NPMSCs)—a key factor in IDD—and to determine the effect of the growth and differentiation factor-5 (GDF5) on the differentiation of rabbit NPMSCs transduced with a lentivirus vector. Methods An in vitro culture model of rabbit NPMSCs was established and NPMSCs were identified by flow cytometry (FCM) and quantitative real-time PCR (qRT-PCR). Subsequently, NPMSCs were randomly divided into three groups: a transfection group (the lentiviral vector carrying GDF5 gene used to transfect NPMSCs); a control virus group (the NPMSCs transfected with an ordinary lentiviral vector); and a normal group (the NPMSCs alone). FCM, qRT-PCR, and western blot (WB) were used to detect the changes in NPMSCs. Results The GDF5-transfected NPMSCs displayed an elongated shape, with decreased cell density, and significantly increased GDF5 positivity rate in the transfected group compared to the other two groups (P < 0.01). The mRNA levels of Krt8, Krt18, and Krt19 in the transfected group were significantly higher in comparison with the other two groups (P < 0.01), and the WB results were consistent with that of qRT-PCR. Conclusions GDF5 could induce the differentiation of NPMSCs. The lentiviral vector carrying the GDF5 gene could be integrated into the chromosome genome of NPMSCs and promoted differentiation of NPMSCs into nucleus pulposus cells. Our findings advance the development of feasible and effective therapies for IDD.

2022 ◽  
Vol 2022 ◽  
pp. 1-15
Peng-Bo Chen ◽  
Gui-Xun Shi ◽  
Tao Liu ◽  
Bo Li ◽  
Sheng-Dan Jiang ◽  

The process of intervertebral disc degeneration (IVDD) is complex, and its mechanism is considered multifactorial. Apoptosis of oxidative stressed nucleus pulposus cells (NPCs) should be a fundamental element in the pathogenesis of IVDD. In our pilot study, we found that the expression of MAT2A decreased, and METTL16 increased in the degenerative nucleus pulposus tissues. Previous studies have shown that the balance of splicing, maturation, and degradation of MAT2A pre-mRNA is regulated by METTL16 m6A modification. In the current study, we aimed to figure out whether this mechanism was involved in the aberrant apoptosis of NPCs and IVDD. Human NPCs were isolated and cultured under oxidative stress. An IVDD animal model was established. It showed that significantly higher METTL16 expression and lower MAT2A expression were seen in either the NPCs under oxidative stress or the degenerative discs of the animal model. MAT2A was inhibited with siRNA in vitro or cycloleucine in vivo. METTL16 was overexpressed with lentivirus in vitro or in vivo. Downregulation of MAT2A or upregulation of METTL16 aggravated nucleus pulposus cell apoptosis and disc disorganization. The balance of splicing, maturation, and degradation of MAT2A pre-mRNA was significantly inclined to degradation in the NPCs with the overexpression of METTL16. Increased apoptosis of NPCs under oxidative stress could be rescued by reducing the expression of METTL16 using siRNA with more maturation of MAT2A pre-mRNA. Collectively, oxidative stress aggravates apoptosis of NPCs through disrupting the balance of splicing, maturation, and degradation of MAT2A pre-mRNA, which is m6A modified by METTL16.

Bone Research ◽  
2022 ◽  
Vol 10 (1) ◽  
Sheng Chen ◽  
Xiaohao Wu ◽  
Yumei Lai ◽  
Di Chen ◽  
Xiaochun Bai ◽  

AbstractIntervertebral disc (IVD) degeneration (IVDD) is the main cause of low back pain with major social and economic burdens; however, its underlying molecular mechanisms remain poorly defined. Here we show that the focal adhesion protein Kindlin-2 is highly expressed in the nucleus pulposus (NP), but not in the anulus fibrosus and the cartilaginous endplates, in the IVD tissues. Expression of Kindlin-2 is drastically decreased in NP cells in aged mice and severe IVDD patients. Inducible deletion of Kindlin-2 in NP cells in adult mice causes spontaneous and striking IVDD-like phenotypes in lumbar IVDs and largely accelerates progression of coccygeal IVDD in the presence of abnormal mechanical stress. Kindlin-2 loss activates Nlrp3 inflammasome and stimulates expression of IL-1β in NP cells, which in turn downregulates Kindlin-2. This vicious cycle promotes extracellular matrix (ECM) catabolism and NP cell apoptosis. Furthermore, abnormal mechanical stress reduces expression of Kindlin-2, which exacerbates Nlrp3 inflammasome activation, cell apoptosis, and ECM catabolism in NP cells caused by Kindlin-2 deficiency. In vivo blocking Nlrp3 inflammasome activation prevents IVDD progression induced by Kindlin-2 loss and abnormal mechanical stress. Of translational significance, adeno-associated virus-mediated overexpression of Kindlin-2 inhibits ECM catabolism and cell apoptosis in primary human NP cells in vitro and alleviates coccygeal IVDD progression caused by mechanical stress in rat. Collectively, we establish critical roles of Kindlin-2 in inhibiting Nlrp3 inflammasome activation and maintaining integrity of the IVD homeostasis and define a novel target for the prevention and treatment of IVDD.

K. V. Kristiansen ◽  
H. Schmökel ◽  
S. Vermeire

Abstract Objective The aim of this study was to review and describe cases of thoracolumbar (TL) hydrated nucleus pulposus extrusion (HNPE) diagnosed with magnetic resonance imaging and surgery, and compare them to cases of cervical (C) HNPE. Study Design Retrospective, single-center study. Results Thirty-six dogs met the inclusion criteria. Fifteen cases were C and 21 TL. Thirteen dogs were chondrodystrophic breeds, mean body weight was 13 kg, median age was 7.5 years, and 30/36 were male. Fewer dogs were chondrodystrophic in the C group compared with the TL group (p = 0.022). More than 90% had an acute onset, and strong activity was more often reported in the TL group. TL HNPE was more often painful, and extruded disc material more often lateralized (p = 0.017). Median Modified Frankel Score at presentation was 3 and 72.2% were non-ambulatory. More TL HNPE (11/21) were treated surgically compared with C HNPE (4/15). Treatment choice was correlated with spinal cord compression (p = 0.0075). Median Modified Frankel Score improved during hospitalization (p = 0.002) and there was no difference in outcome between C and TL HNPE or conservative and surgical treatment. Mean follow-up time was 33 days. All patients were ambulatory at follow-up. Conclusion This study suggests that the HNPE is not limited to the C vertebral column of dogs and can occur in the TL vertebral column as well. Dogs with TL HNPE show spinal hyperesthesia more often and extruded nucleus material is more often lateralized. Outcome is similar to what has previously been described for C HNPE.

Zengxin Jiang ◽  
Chang Jiang ◽  
Lixia Jin ◽  
Zixian Chen ◽  
Zhenzhou Feng ◽  

JOR Spine ◽  
2022 ◽  
Logan M. Piening ◽  
David J. Lillyman ◽  
Fei San Lee ◽  
Alvaro Moreno Lozano ◽  
Jeremy R. Miles ◽  

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Taiqiu Chen ◽  
Pengfei Li ◽  
Jincheng Qiu ◽  
Wenjun Hu ◽  
Shaoguang Li ◽  

Intervertebral disc degeneration (IDD) is a degenerative disease that is characterized by decreased matrix synthesis and extra degradation, nucleus pulposus cells (NPCs) apoptosis, and infiltration of inflammatory factors. Aloin, a colored compound from aloe plants, has been shown to be effective against skeletal degenerative diseases, but it is unclear whether it is protective against IDD. Herein, we investigated the role of aloin in NPCs. In our study, the upregulation of proinflammatory factors, apoptosis, and unbalanced matrix metabolism were observed in degenerative NP tissues. We found that aloin had a curative effect on extracellular matrix metabolism and apoptosis in TNF-alpha- (TNF-α-) treated NPCs by inhibiting oxidative stress and the proinflammatory factor expression. Further investigation revealed that aloin treatment suppressed the TAK1/NF-κB pathway. Moreover, the expression level of the NLPR3 inflammasome was downregulated after aloin treatment in TNF-α-treated NPCs. In summary, our results demonstrated that aloin treatment can reverse TNF-α-induced unbalanced matrix metabolism and apoptosis of NPCs via the TAK1/NF-κB/NLRP3 axis. This study supports that aloin can be a promising therapeutic agent for IDD.

Sign in / Sign up

Export Citation Format

Share Document