scholarly journals Local mollification of Riemannian metrics using Ricci flow, and Ricci limit spaces

2021 ◽  
Vol 25 (2) ◽  
pp. 913-948
Author(s):  
Miles Simon ◽  
Peter M Topping
2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Nefton Pali

AbstractWe introduce a flow of Riemannian metrics and positive volume forms over compact oriented manifolds whose formal limit is a shrinking Ricci soliton. The case of a fixed volume form has been considered in our previouswork.We still call this new flow, the Soliton-Ricci flow. It corresponds to a forward Ricci type flow up to a gauge transformation. This gauge is generated by the gradient of the density of the volumes. The new Soliton-Ricci flow exist for all times. It represents the gradient flow of Perelman’s W functional with respect to a pseudo-Riemannian structure over the space of metrics and normalized positive volume forms. We obtain an expression of the Hessian of the W functional with respect to such structure. Our expression shows the elliptic nature of this operator in the orthogonal directions to the orbits obtained by the action of the group of diffeomorphism. In the case that initial data is Kähler, the Soliton-Ricci flow over a Fano manifold preserves the Kähler condition and the symplectic form. Over a Fano manifold, the space of tamed complex structures embeds naturally, via the Chern-Ricci map, into the space of metrics and normalized positive volume forms. Over such space the pseudo-Riemannian structure restricts to a Riemannian one. We perform a study of the sign of the restriction of the Hessian of the W functional over such space. This allows us to obtain a finite dimensional reduction of the stability problem for Kähler-Ricci solitons. This reduction represents the solution of this well known problem. A less precise and less geometric version of this result has been obtained recently by the author in [28].


10.53733/152 ◽  
2021 ◽  
Vol 52 ◽  
pp. 381-402
Author(s):  
Sun-Yung Alice Chang ◽  
Eric Chen

In this paper, on 4-spheres equipped with Riemannian metrics we study some integral conformal invariants, the sign and size of which under Ricci flow characterize the standard 4-sphere. We obtain a conformal gap theorem, and for Yamabe metrics of positive scalar curvature with L^2 norm of the Weyl tensor of the metric suitably small, we establish the monotonic decay of the L^p norm for certain p>2 of the reduced curvature tensor along the normalized Ricci flow, with the metric converging exponentially to the standard 4-sphere.


2016 ◽  
Vol 51 (5) ◽  
pp. 215-221
Author(s):  
H. Ghahremani-Gol ◽  
A. Razavi

2010 ◽  
Vol 0 (-1) ◽  
pp. 447-454
Author(s):  
A. Bhattacharyya ◽  
T. De
Keyword(s):  

2020 ◽  
Vol 7 (1) ◽  
pp. 241-256
Author(s):  
Matthew Gibson ◽  
Jeffrey Streets

AbstractWe describe natural deformation classes of generalized Kähler structures using the Courant symmetry group, which determine natural extensions of the notions of Kähler class and Kähler cone to generalized Kähler geometry. We show that the generalized Kähler-Ricci flow preserves this generalized Kähler cone, and the underlying real Poisson tensor.


2020 ◽  
pp. 1-24
Author(s):  
VICTORIA SADOVSKAYA

Abstract We consider Hölder continuous cocycles over an accessible partially hyperbolic system with values in the group of diffeomorphisms of a compact manifold $\mathcal {M}$ . We obtain several results for this setting. If a cocycle is bounded in $C^{1+\gamma }$ , we show that it has a continuous invariant family of $\gamma $ -Hölder Riemannian metrics on $\mathcal {M}$ . We establish continuity of a measurable conjugacy between two cocycles assuming bunching or existence of holonomies for both and pre-compactness in $C^0$ for one of them. We give conditions for existence of a continuous conjugacy between two cocycles in terms of their cycle weights. We also study the relation between the conjugacy and holonomies of the cocycles. Our results give arbitrarily small loss of regularity of the conjugacy along the fiber compared to that of the holonomies and of the cocycle.


Sign in / Sign up

Export Citation Format

Share Document