symmetry group
Recently Published Documents


TOTAL DOCUMENTS

725
(FIVE YEARS 112)

H-INDEX

40
(FIVE YEARS 3)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Abhay Ashtekar ◽  
Neev Khera ◽  
Maciej Kolanowski ◽  
Jerzy Lewandowski

Abstract It is well-known that blackhole and cosmological horizons in equilibrium situations are well-modeled by non expanding horizons (NEHs) [1–3]. In the first part of the paper we introduce multipole moments to characterize their geometry, removing the restriction to axisymmetric situations made in the existing literature [4]. We then show that the symmetry group $$ \mathfrak{G} $$ G of NEHs is a 1-dimensional extension of the BMS group $$ \mathfrak{B} $$ B . These symmetries are used in a companion paper [5] to define charges and fluxes on NEHs, as well as perturbed NEHs. They have physically attractive properties. Finally, it is generally not appreciated that $$ \mathcal{I} $$ I ±of asymptotically flat space-times are NEHs in the conformally completed space-time. Forthcoming papers will (i) show that $$ \mathcal{I} $$ I ± have a small additional structure that reduces $$ \mathfrak{G} $$ G to the BMS group $$ \mathfrak{B} $$ B , and the BMS charges and fluxes can be recovered from the NEH framework; and, (ii) develop gravitational wave tomography for the late stage of compact binary coalescences: reading-off the dynamics of perturbed NEHs in the strong field regime (via evolution of their multipoles), from the waveform at $$ \mathcal{I} $$ I +.


2022 ◽  
Vol 130 (1) ◽  
pp. 104
Author(s):  
Е.П. Чукалина ◽  
А. Яблуновский ◽  
И.А. Гудим

Iron borates NdFe3(BO3)4 and SmFe3(BO3)4 activated with 1% erbium, with a huntite structure (space symmetry group R32) were investigated by the method of erbium spectroscopic probe. From an analysis of the temperature dependence of the transmission spectra in the region of the 4I15/2→4I13/2 transition in the Er3+ ion, it was found that both studied compounds order antiferromagnetically at TN ≈ 33 K into an easy-plane magnetic structure. No other phase transitions were found.


Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 27
Author(s):  
Tuong Trong Truong

Among the few exactly solvable problems in theoretical physics, the 2D (two-dimensional) Newtonian free fall problem in Euclidean space is perhaps the least known as compared to the harmonic oscillator or the Kepler–Coulomb problems. The aim of this article is to revisit this problem at the classical level as well as the quantum level, with a focus on its dynamical symmetries. We show how these dynamical symmetries arise as a special limit of the dynamical symmetries of the Kepler–Coulomb problem, and how a connection to the quartic anharmonic oscillator problem, a long-standing unsolved problem in quantum mechanics, can be established. To this end, we construct the Hilbert space of states with free boundary conditions as a space of square integrable functions that have a special functional integral representation. In this functional space, the free fall dynamical symmetry algebra is shown to be isomorphic to the so-called Klink’s algebra of the quantum quartic anharmonic oscillator problem. Furthermore, this connection entails a remarkable integral identity for the quantum quartic anharmonic oscillator eigenfunctions, which implies that these eigenfunctions are in fact zonal functions of an underlying symmetry group representation. Thus, an appropriate representation theory for the 2D Newtonian free fall quantum symmetry group may potentially open the way to exactly solving the difficult quantization problem of the quartic anharmonic oscillator. Finally, the initial value problem of the acoustic Klein–Gordon equation for wave propagation in a sound duct with a varying circular section is solved as an illustration of the techniques developed here.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Pedro Liendo ◽  
Junchen Rong

Abstract We use the 4 − ϵ expansion to search for fixed points corresponding to 2 + 1 dimensional $$ \mathcal{N} $$ N =1 Wess-Zumino models of NΦ scalar superfields interacting through a cubic superpotential. In the NΦ = 3 case we classify all SUSY fixed points that are perturbatively unitary. In the NΦ = 4 and NΦ = 5 cases, we focus on fixed points where the scalar superfields form a single irreducible representation of the symmetry group (irreducible fixed points). For NΦ = 4 we show that the S5 invariant super Potts model is the only irreducible fixed point where the four scalar superfields are fully interacting. For NΦ = 5, we go through all Lie subgroups of O(5) and use the GAP system for computational discrete algebra to study finite subgroups of O(5) up to order 800. This analysis gives us three fully interacting irreducible fixed points. Of particular interest is a subgroup of O(5) that exhibits O(3)/Z2 symmetry. It turns out this fixed point can be generalized to a new family of models, with NΦ = $$ \frac{\mathrm{N}\left(\mathrm{N}-1\right)}{2} $$ N N − 1 2 − 1 and O(N)/Z2 symmetry, that exists for arbitrary integer N≥3.


2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Lakshya Bhardwaj ◽  
Max Hübner ◽  
Sakura Schafer-Nameki

We determine the 1-form symmetry group for any 4d4d\mathcal{N}=2𝒩=2 class S theory constructed by compactifying a 6d6d\mathcal{N}=(2,0)𝒩=(2,0) SCFT on a Riemann surface with arbitrary regular untwisted and twisted punctures. The 6d6d theory has a group of mutually non-local dimension-2 surface operators, modulo screening. Compactifying these surface operators leads to a group of mutually non-local line operators in 4d4d, modulo screening and flavor charges. Complete specification of a 4d4d theory arising from such a compactification requires a choice of a maximal subgroup of mutually local line operators, and the 1-form symmetry group of the chosen 4d4d theory is identified as the Pontryagin dual of this maximal subgroup. We also comment on how to generalize our results to compactifications involving irregular punctures. Finally, to complement the analysis from 6d, we derive the 1-form symmetry from a Type IIB realization of class S theories.


2021 ◽  
Vol 80 (1) ◽  
pp. 69-86
Author(s):  
Jean-Baptiste Bellet

The equiangular cubed sphere is a spherical grid, widely used in computational physics. This paper deals with mathematical properties of this grid. We identify the symmetry group, i.e. the group of the orthogonal transformations that leave the cubed sphere invariant. The main result is that it coincides with the symmetry group of a cube. The proposed proof emphasizes metric properties of the cubed sphere. We study the geodesic distance on the grid, which reveals that the shortest geodesic arcs match with the vertices of a cuboctahedron. The results of this paper lay the foundation for future numerical schemes, based on rotational invariance of the cubed sphere.


2021 ◽  
Vol 17 (34) ◽  
pp. 101-109
Author(s):  
Yeisson Alexis Acevedo-Agudelo ◽  
Danilo Andrés García-Hernández ◽  
Oscar Mario Londoño-Duque ◽  
Gabriel Ignacio Loaiza-Ossa

It is known that the classification of the Lie algebras is a classical problem. Due to Levi’s Theorem the question can be reduced to the classification of semi-simple and solvable Lie algebras. This paper is devoted to classify the Lie algebra generated by the Lie symmetry group of the Chazy equation. We also present explicitly the one parame-ter subgroup related to the infinitesimal generators of the Chazy symmetry group. Moreover the classification of the Lie algebra associated to the optimal system is investigated. La clasificación de las álgebras de Lie es un problema clásico. Acorde al teorema de Levi la cuestión puede reducirse a la clasificación de álgebras de Lie semi-simples y solubles. Este artículo está dedicado a clasificar el álgebra de Lie generada por el grupo de simetría de Lie para la ecuación de Chazy. También presentamos explícitamente los subgrupos a un parámetro  relacionados con los generadores de las simetrías del grupo de Chazy. Además, la clasificación de la álgebra de Lie asociada al sistema optimo es investigada.


Author(s):  
Polina Sechenykh

The paper presents the calculation of the metric parameters of crystalline compounds according to a given chemical formula and a space symmetry group. The structures of perovskite and double perovskite are considered.


2021 ◽  
Vol 39 (2) ◽  
Author(s):  
Danilo García Hernández ◽  
Oscar Mario Londoño Duque ◽  
Yeisson Acevedo ◽  
Gabriel Loaiza

We obtain the complete classification of the Lie symmetry group and the optimal system’s generating operators associated with a particular case of the generalized Kummer - Schwarz equation. Using those operators we characterize all invariant solutions, alternative solutions were found for the equation studied and the Lie algebra associated with the symmetry group is classified.


Sign in / Sign up

Export Citation Format

Share Document