Weighted codebook mapping for noisy speech enhancement using harmonic-noise model

Author(s):  
Esfandiar Zavarehei ◽  
Saeed Vaseghi ◽  
Qin Yan
2008 ◽  
Vol 22 (1) ◽  
pp. 69-83 ◽  
Author(s):  
Qin Yan ◽  
Saeed Vaseghi ◽  
Esfandiar Zavarehei ◽  
Ben Milner ◽  
Jonathan Darch ◽  
...  

Author(s):  
Zhiheng Ouyang ◽  
Hongjiang Yu ◽  
Wei-Ping Zhu ◽  
Benoit Champagne

Signals ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 434-455
Author(s):  
Sujan Kumar Roy ◽  
Kuldip K. Paliwal

Inaccurate estimates of the linear prediction coefficient (LPC) and noise variance introduce bias in Kalman filter (KF) gain and degrade speech enhancement performance. The existing methods propose a tuning of the biased Kalman gain, particularly in stationary noise conditions. This paper introduces a tuning of the KF gain for speech enhancement in real-life noise conditions. First, we estimate noise from each noisy speech frame using a speech presence probability (SPP) method to compute the noise variance. Then, we construct a whitening filter (with its coefficients computed from the estimated noise) to pre-whiten each noisy speech frame prior to computing the speech LPC parameters. We then construct the KF with the estimated parameters, where the robustness metric offsets the bias in KF gain during speech absence of noisy speech to that of the sensitivity metric during speech presence to achieve better noise reduction. The noise variance and the speech model parameters are adopted as a speech activity detector. The reduced-biased Kalman gain enables the KF to minimize the noise effect significantly, yielding the enhanced speech. Objective and subjective scores on the NOIZEUS corpus demonstrate that the enhanced speech produced by the proposed method exhibits higher quality and intelligibility than some benchmark methods.


Author(s):  
Judith Justin ◽  
Vanithamani R.

In this chapter, a speech enhancement technique is implemented using a neuro-fuzzy classifier. Noisy speech sentences from NOIZEUS and AURORA databases are taken for the study. Feature extraction is implemented through modifications in amplitude magnitude spectrograms. A four class neuro-fuzzy classifier splits the noisy speech samples into noise-only part, signal only part, more noise-less signal part, and more signal-less noise part of the time-frequency units. Appropriate weights are applied in the enhancement phase. The enhanced speech sentence is evaluated using objective measures. An analysis of the performance of the Neuro-Fuzzy 4 (NF 4) classifier is done. A comparison of the performance of the classifier with other conventional techniques is done for various noises at different noise levels. It is observed that the numerical values of the measures obtained are better when compared to the others. An overall comparison of the performance of the NF 4 classifier is done and it is inferred that NF4 outperforms the other techniques in speech enhancement.


2011 ◽  
Vol 464 ◽  
pp. 721-724 ◽  
Author(s):  
Zhi Yong He ◽  
Li Heng Luo

Speech enhancement is very important for mobile communications or some other applications in car. The energy distribution of signal is the basis of algorithms which denoise noisy speech in time-frequency domain. In this work, the noise regarded is the tire-road noise when driving in expressway. Wavelet packets transform is used in the analysis. After decomposing noise signal and noisy speech signal by wavelet packet transform, the analysis for the difference of the energy distribution between noisy speech and noise is finished.


2007 ◽  
Vol 40 (3) ◽  
pp. 1123-1134 ◽  
Author(s):  
Joon-Hyuk Chang ◽  
Saeed Gazor ◽  
Nam Soo Kim ◽  
Sanjit K. Mitra

Sign in / Sign up

Export Citation Format

Share Document