Shallow Convolution-Augmented Transformer with Differentiable Neural Computer for Low-Complexity Classification of Variable-Length Acoustic Scene

Author(s):  
Soonshin Seo ◽  
Donghyun Lee ◽  
Ji-Hwan Kim
Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 371
Author(s):  
Yerin Lee ◽  
Soyoung Lim ◽  
Il-Youp Kwak

Acoustic scene classification (ASC) categorizes an audio file based on the environment in which it has been recorded. This has long been studied in the detection and classification of acoustic scenes and events (DCASE). This presents the solution to Task 1 of the DCASE 2020 challenge submitted by the Chung-Ang University team. Task 1 addressed two challenges that ASC faces in real-world applications. One is that the audio recorded using different recording devices should be classified in general, and the other is that the model used should have low-complexity. We proposed two models to overcome the aforementioned problems. First, a more general classification model was proposed by combining the harmonic-percussive source separation (HPSS) and deltas-deltadeltas features with four different models. Second, using the same feature, depthwise separable convolution was applied to the Convolutional layer to develop a low-complexity model. Moreover, using gradient-weight class activation mapping (Grad-CAM), we investigated what part of the feature our model sees and identifies. Our proposed system ranked 9th and 7th in the competition for these two subtasks, respectively.


2018 ◽  
Vol 259 ◽  
pp. 130-141 ◽  
Author(s):  
Jin-Yi Cai ◽  
Zhiguo Fu ◽  
Mingji Xia

Author(s):  
Marco Necci ◽  
Damiano Piovesan ◽  
Damiano Clementel ◽  
Zsuzsanna Dosztányi ◽  
Silvio C E Tosatto

Abstract Motivation The earlier version of MobiDB-lite is currently used in large-scale proteome annotation platforms to detect intrinsic disorder. However, new theoretical models allow for the classification of intrinsically disordered regions into subtypes from sequence features associated with specific polymeric properties or compositional bias. Results MobiDB-lite 3.0 maintains its previous speed and performance but also provides a finer classification of disorder by identifying regions with characteristics of polyolyampholytes, positive or negative polyelectrolytes, low-complexity regions or enriched in cysteine, proline or glycine or polar residues. Subregions are abundantly detected in IDRs of the human proteome. The new version of MobiDB-lite represents a new step for the proteome level analysis of protein disorder. Availability and implementation Both the MobiDB-lite 3.0 source code and a docker container are available from the GitHub repository:https://github.com/BioComputingUP/MobiDB-lite


1993 ◽  
Author(s):  
Joydeep Ghosh ◽  
Narsimham V. Gangishetti ◽  
Srinivasa V. Chakravarthy

Sign in / Sign up

Export Citation Format

Share Document