complexity classification
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 23)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
Jiehua Chen ◽  
Sanjukta Roy ◽  
Manuel Sorge

We study generalizations of stable matching in which agents may be matched fractionally; this models time-sharing assignments. We focus on the so-called ordinal stability and cardinal stability, and investigate the computational complexity of finding an ordinally stable or cardinally stable fractional matching which either maximizes the social welfare (i.e., the overall utilities of the agents) or the number of fully matched agents (i.e., agents whose matching values sum up to one). We complete the complexity classification of both optimization problems for both ordinal stability and cardinal stability, distinguishing between the marriage (bipartite) and roommates (non-bipartite) cases and the presence or absence of ties in the preferences. In particular, we prove a surprising result that finding a cardinally stable fractional matching with maximum social welfare is NP-hard even for the marriage case without ties. This answers an open question and exemplifies a rare variant of stable marriage that remains hard for preferences without ties. We also complete the picture of the relations of the stability notions and derive structural properties.


Algorithmica ◽  
2021 ◽  
Author(s):  
Marc Roth

AbstractWe study the parameterized complexity of the problem of counting graph homomorphisms with given partial injectivity constraints, i.e., inequalities between pairs of vertices, which subsumes counting of graph homomorphisms, subgraph counting and, more generally, counting of answers to equi-join queries with inequalities. Our main result presents an exhaustive complexity classification for the problem in fixed-parameter tractable and $$\#\mathsf {W[1]}$$ # W [ 1 ] -complete cases. The proof relies on the framework of linear combinations of homomorphisms as independently discovered by Chen and Mengel (PODS 16) and by Curticapean, Dell and Marx in the recent breakthrough result regarding the exact complexity of the subgraph counting problem (STOC 17). Moreover, we invoke Rota’s NBC-Theorem to obtain an explicit criterion for fixed-parameter tractability based on treewidth. The abstract classification theorem is then applied to the problem of counting locally injective graph homomorphisms from small pattern graphs to large target graphs. As a consequence, we are able to fully classify its parameterized complexity depending on the class of allowed pattern graphs.


HPB ◽  
2021 ◽  
Vol 23 ◽  
pp. S176
Author(s):  
I. Nakamura ◽  
R. Romero ◽  
A. Kurimoto ◽  
H. Iwama ◽  
K. Toriguchi ◽  
...  

Author(s):  
M. J. Alger ◽  
J. D. Livingston ◽  
N. M. McClure-Griffiths ◽  
J. L. Nabaglo ◽  
O. I. Wong ◽  
...  

Abstract Faraday complexity describes whether a spectropolarimetric observation has simple or complex magnetic structure. Quickly determining the Faraday complexity of a spectropolarimetric observation is important for processing large, polarised radio surveys. Finding simple sources lets us build rotation measure grids, and finding complex sources lets us follow these sources up with slower analysis techniques or further observations. We introduce five features that can be used to train simple, interpretable machine learning classifiers for estimating Faraday complexity. We train logistic regression and extreme gradient boosted tree classifiers on simulated polarised spectra using our features, analyse their behaviour, and demonstrate our features are effective for both simulated and real data. This is the first application of machine learning methods to real spectropolarimetry data. With 95% accuracy on simulated ASKAP data and 90% accuracy on simulated ATCA data, our method performs comparably to state-of-the-art convolutional neural networks while being simpler and easier to interpret. Logistic regression trained with our features behaves sensibly on real data and its outputs are useful for sorting polarised sources by apparent Faraday complexity.


Sign in / Sign up

Export Citation Format

Share Document