CQChecker: A Tool to Check Ontologies in OWL-DL using Competency Questions written in Controlled Natural Language

2014 ◽  
Vol 12 (2) ◽  
pp. 115-129 ◽  
Author(s):  
Camila Bezerra ◽  
Filipe Santana ◽  
Fred Freitas
2021 ◽  
Author(s):  
Moez Krichen ◽  
Seifeddine Mechti

<div>We propose a new model-based testing approach which takes as input a set of requirements described in Arabic Controlled Natural Language (CNL) which is a subset of the Arabic language generated by a specific grammar. The semantics of the considered requirements is defined using the Case Grammar Theory (CTG). The requirements are translated into Transition Relations which serve as an input for test cases generation tools.</div>


2021 ◽  
Author(s):  
Moez Krichen ◽  
Seifeddine Mechti

<div>We propose a new model-based testing approach which takes as input a set of requirements described in Arabic Controlled Natural Language (CNL) which is a subset of the Arabic language generated by a specific grammar. The semantics of the considered requirements is defined using the Case Grammar Theory (CTG). The requirements are translated into Transition Relations which serve as an input for test cases generation tools.</div>


Author(s):  
David Mendes ◽  
Irene Pimenta Rodrigues ◽  
Carlos Fernandes Baeta

We show how we implemented an end-to-end process to automatically develop a clinical practice knowledge base acquiring from SOAP notes. With our contribution we intend to overcome the “Knowledge Acquisition Bottleneck” problem by jump-starting the knowledge gathering from the most widely available source of clinical information that are natural language reports. We present the different phases of our process to populate automatically a proposed ontology with clinical assertions extracted from daily routine SOAP notes. The enriched ontology becomes a reasoning able knowledge base that depicts accurately and realistically the clinical practice represented by the source reports. With this knowledge structure in place and novel state-of-the-art reasoning capabilities, based in consequence driven reasoners, a clinical QA system based in controlled natural language is introduced that reveals breakthrough possibilities regarding the applicability of Artificial Intelligence techniques to the medical field.


Sign in / Sign up

Export Citation Format

Share Document