scholarly journals Locating Multi Types of FACTS for Congestion Management in Deregulated Power Systems Considering Voltage Stability

Author(s):  
Sahar Kaddah ◽  
Abdelfattah Eladl ◽  
Ebtehag Haikal
2013 ◽  
Vol 14 (6) ◽  
pp. 591-607 ◽  
Author(s):  
J. Preetha Roselyn ◽  
D. Devaraj ◽  
Subhransu Sekhar Dash

Abstract Voltage stability is an important issue in the planning and operation of deregulated power systems. The voltage stability problems is a most challenging one for the system operators in deregulated power systems because of the intense use of transmission line capabilities and poor regulation in market environment. This article addresses the congestion management problem avoiding offline transmission capacity limits related to voltage stability by considering Voltage Security Constrained Optimal Power Flow (VSCOPF) problem in deregulated environment. This article presents the application of Multi Objective Differential Evolution (MODE) algorithm to solve the VSCOPF problem in new competitive power systems. The maximum of L-index of the load buses is taken as the indicator of voltage stability and is incorporated in the Optimal Power Flow (OPF) problem. The proposed method in hybrid power market which also gives solutions to voltage stability problems by considering the generation rescheduling cost and load shedding cost which relieves the congestion problem in deregulated environment. The buses for load shedding are selected based on the minimum eigen value of Jacobian with respect to the load shed. In the proposed approach, real power settings of generators in base case and contingency cases, generator bus voltage magnitudes, real and reactive power demands of selected load buses using sensitivity analysis are taken as the control variables and are represented as the combination of floating point numbers and integers. DE/randSF/1/bin strategy scheme of differential evolution with self-tuned parameter which employs binomial crossover and difference vector based mutation is used for the VSCOPF problem. A fuzzy based mechanism is employed to get the best compromise solution from the pareto front to aid the decision maker. The proposed VSCOPF planning model is implemented on IEEE 30-bus system, IEEE 57 bus practical system and IEEE 118 bus system. The pareto optimal front obtained from MODE is compared with reference pareto front and the best compromise solution for all the cases are obtained from fuzzy decision making strategy. The performance measures of proposed MODE in two test systems are calculated using suitable performance metrices. The simulation results show that the proposed approach provides considerable improvement in the congestion management by generation rescheduling and load shedding while enhancing the voltage stability in deregulated power system.


Author(s):  
Majid Moazzami ◽  
Hossein Shahinzadeh ◽  
Gevork B. Gharehpetian ◽  
Abolfazl Shafiei

Congestion management is one of the important issues in the deregulated power systems. There are several methods to eliminate congestion. Utilizing FACTS devices is an appropriate option for large-scale and quick control of flows of transmission lines. FACTS devices such as Thyristor Controlled Series Capacitor (TCSC) can help to mitigate the transmitting flow of power in the congested lines, which leads to an increase in the network loading ability as well as reduction of both losses and production costs. Due to the considerably high price of FACTS devices, it is important to determine their optimum location on the network. Accordingly, in this paper, the Antlion optimization algorithm (ALO) has been employed to conduct a congestion management analysis to determine the optimal location for the installation of TCSC, which is simulated on an IEEE 14-bus test system subject to satisfy the constraints of the market environment.


Sign in / Sign up

Export Citation Format

Share Document