scholarly journals Response surface methodology-based hybrid robust design optimization for complex product under mixed uncertainties

2019 ◽  
Vol 30 (2) ◽  
pp. 308 ◽  
2013 ◽  
Vol 135 (8) ◽  
Author(s):  
Yi Zhang ◽  
Serhat Hosder

The objective of this paper is to introduce a computationally efficient and accurate approach for robust optimization under mixed (aleatory and epistemic) uncertainties using stochastic expansions that are based on nonintrusive polynomial chaos (NIPC) method. This approach utilizes stochastic response surfaces obtained with NIPC methods to approximate the objective function and the constraints in the optimization formulation. The objective function includes a weighted sum of the stochastic measures, which are minimized simultaneously to ensure the robustness of the final design to both inherent and epistemic uncertainties. The optimization approach is demonstrated on two model problems with mixed uncertainties: (1) the robust design optimization of a slider-crank mechanism and (2) robust design optimization of a beam. The stochastic expansions are created with two different NIPC methods, Point-Collocation and Quadrature-Based NIPC. The optimization results are compared to the results of another robust optimization technique that utilizes double-loop Monte Carlo sampling (MCS) for the propagation of mixed uncertainties. The optimum designs obtained with two different optimization approaches agree well in both model problems; however, the number of function evaluations required for the stochastic expansion based approach is much less than the number required by the Monte Carlo based approach, indicating the computational efficiency of the optimization technique introduced.


Author(s):  
Zhenyu Liu ◽  
Xiang Peng ◽  
Chan Qiu ◽  
Jianrong Tan ◽  
Guifang Duan ◽  
...  

The uncertainties of design variables, noise parameters, and metamodel are important factors in simulation-based robust design optimization. Most conventional metamodel construction methods only consider one or two uncertainties. In this paper, a new surrogate modeling method simultaneously measuring all the uncertainties is proposed for simulation-based robust design optimization of complex product. The effect of metamodel uncertainty on product performance uncertainty is quantified through uncertainty propagation analysis among design variables uncertainty, noise parameters uncertainty, metamodel uncertainty, and performance uncertainty. Then, the sampling points are selected and the metamodel is constructed based on the predictive interval of product performance and mean square error of the Kriging metamodel. The constructed metamodel is applied to robust design optimization considering multiple uncertainties. Results of two mathematical examples show that the proposed metamodel considering multiple uncertainties increases the result accuracy of robust design optimization. Finally, the proposed algorithm is applied to robust design optimization of a heat exchanger, and the total heat transfer rate is enhanced under uncertainties of fin structural parameters, operation conditions parameters and simulation metamodel.


Sign in / Sign up

Export Citation Format

Share Document