thermal protection
Recently Published Documents


TOTAL DOCUMENTS

2153
(FIVE YEARS 541)

H-INDEX

43
(FIVE YEARS 9)

2022 ◽  
Vol 11 (2) ◽  
pp. 365-377
Author(s):  
Lingwei Yang ◽  
Xueren Xiao ◽  
Liping Liu ◽  
Jie Luo ◽  
Kai Jiang ◽  
...  

AbstractThis work employed an inductively coupled plasma wind tunnel to study the dynamic oxidation mechanisms of carbon fiber reinforced SiC matrix composite (Cf/SiC) in high-enthalpy and high-speed plasmas. The results highlighted a transition of passive/active oxidations of SiC at 800–1600 °C and 1–5 kPa. Specially, the active oxidation led to the corrosion of the SiC coating and interruption of the SiO2 growth. The transition borders of active/passive oxidations were thus defined with respect to oxidation temperature and partial pressure of atomic O in the high-enthalpy and high-speed plasmas. In the transition and passive domains, the SiC dissipation was negligible. By multiple dynamic oxidations of Cf/SiC in the domains, the SiO2 thickness was not monotonously increased due to the competing mechanisms of passive oxidation of SiC and dissipation of SiO2. In addition, the mechanical properties of the SiC coating/matrix and the Cf/SiC were maintained after long-term dynamic oxidations, which suggested an excellent thermal stability of Cf/SiC serving in thermal protection systems (TPSs) of reusable hypersonic vehicles.


2022 ◽  
Vol 6 (1) ◽  
pp. 24
Author(s):  
Vinothini Venkatachalam ◽  
Sergej Blem ◽  
Ali Gülhan ◽  
Jon Binner

Ultra high-temperature ceramic matrix composites (UHTCMCs) based on carbon fibre (Cf) have been shown to offer excellent temperature stability exceeding 2000 °C in highly corrosive environments, which are prime requirements for various aerospace applications. In C3Harme, a recent European Union-funded Horizon 2020 project, an experimental campaign has been carried out to assess and screen a range of UHTCMC materials for near-zero ablation rocket nozzle and thermal protection systems. Samples with ZrB2-impregnated pyrolytic carbon matrices and 2.5D woven continuous carbon fibre preforms, produced by slurry impregnation and radio frequency aided chemical vapour infiltration (RF-CVI), were tested using the vertical free jet facility at DLR, Cologne using solid propellants. When compared to standard CVI, RFCVI accelerates pyrolytic carbon densification, resulting in a much shorter manufacturing time. The samples survived the initial thermal shock and subsequent surface temperatures of >2000 °C with a minimal ablation rate. Post-test characterisation revealed a correlation between surface temperature and an accelerated catalytic activity, which lead to an understanding of the crucial role of preserving the bulk of the sample.


2022 ◽  
Vol 906 ◽  
pp. 77-83
Author(s):  
Anna Karamyan ◽  
Karen Movsesyan ◽  
Tigran Manukyan

The choice of highly efficient materials for the opaque parts of the building facades is the most effective factor in increasing its thermal protection. A decrease in the coefficient of U-value of opaque parts of a building directly affects the consumption of both thermal energy and the energy demand for cooling. Two-component or multi-component composite materials today occupy a large place in modern construction. This article analyzes the methodology for testing the thermophysical properties of these materials, reveals a new approach to determine to it, taking into account the links between the thermal conductivity and the thermal diffusivity of materials. The article analyzes the relationship between buildings and the surfaces of the outer envelope and the dependence of the energy efficiency index of the building.


Author(s):  
Sofia Paixão ◽  
Cláudia Peixoto ◽  
Marta Reinas ◽  
João Carvalho

AbstractThe present document discusses the development of a new trowelable Thermal Protection System (TPS), able of being mixed, applied and cured directly onto the vehicle structure, with the aim to fulfill the requirements of the thermal properties for the re-usable launch vehicle studied in the Retro Propulsion Landing Technology (RETALT) project. During the development of this TPS, several formula optimizations were made to improve or eliminate cracks in the char surface, increase char stiffness, rheological adjustments, and adhesion improvement to different substrates. The most promising material developed is composed by cork and epoxy resin, together with a set of rheological and thermal resistance additives, that makes it possible to be applied with a spatula, while at the same time it is able to withstand the demanding environmental conditions during atmospheric reentry. In terms of thermal properties, the developed material has a higher thermal conductivity than the current P50 TPS commercialized by Amorim Cork Composites (ACC), but it has a better behavior when exposed to flame conditions. It is expected that the absence of cracks improves its structure and resistance to demanding conditions. The development work included a detailed study of the composition and processes required for the development of a TPS material, which were evaluated by several types of flame characterization tests and thermal properties analysis.


2022 ◽  
Vol 905 ◽  
pp. 246-253
Author(s):  
Hong Wei Tian ◽  
Hai Feng Chang ◽  
Hong Jun Ye

The sandwich structure with foldcore is a new type of structural material with light weight, high specific strength, high specific rigidity and multi-functional potential, which is connected with each other in core space, this kind of three dimensional structures can be formed by folding based on two dimensional materials. The main research achievements and characteristics of sandwich structure with foldcore in recent years are summarized and analyzed according to the lightweight and multi-functional requirements of aircraft structure in this paper. The configuration optimization scheme and fabrication process of the sandwich structure with foldcore are described. Moreover, the research status of multi-function of the sandwich structure with foldcore are summarized, including sound insulation, thermal protection, stealth performance of the structure, etc.


Author(s):  
Mariasole Laureti ◽  
Sebastian Karl

AbstractThe assessment of thermal loads occurring on reusable launch vehicles during the entire trajectory is essential for the correct dimensioning of the thermal protection system. Due to the costs and limitations of ground-based testing for large-scale vehicles, these predictions rely intensively on numerical simulations (CFD). The need of aero-thermal databases, as a fast-response surrogate model for the aero-thermodynamic heating, arises from the practical impossibility of performing unsteady CFD analysis over the entire trajectory due to the large disparity of fluid mechanical and structural time scales. The construction of these databases is based on a representative set of CFD simulations which cover, at a minimum, the flight regimes with significant thermal loads. The aim of this paper is to analyse the results of these representative CFD simulations during both the ascent flight and atmospheric entry for the RETALT1 vehicle to show typical flow field phenomena occurring during these phases and the resulting heating patterns.


2022 ◽  
Author(s):  
Yu-Chuen Chang ◽  
Abdullah Kafi ◽  
William P. Fahy ◽  
Colin M. Yee ◽  
Hao Wu ◽  
...  

2022 ◽  
Author(s):  
Zane B. Hays ◽  
Sarah N. D'Souza ◽  
Veronica M. Hawke ◽  
Bryan Yount ◽  
David Kinney ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document