Reductive Dehalogenation of Environmental Contaminants: A Critical Review

1989 ◽  
Vol 24 (2) ◽  
pp. 299-322 ◽  
Author(s):  
R. M. Baxter

Abstract It is generally recognized that reductive processes are more important than oxidative ones in transforming, degrading and mineralizing many environmental contaminants. One process of particular importance is reductive dehalogenation, i.e., the replacement of a halogen atom (most commonly a chlorine atom) by a hydrogen atom. A number of different mechanisms are involved in these reactions. Photochemical reactions probably play a role in some instances. Aliphatic compounds such as chloroethanes, partly aliphatic compounds such as DDT, and alicyclic compounds such as hexachlorocyclohexane are readily dechlorinated in the laboratory by reaction with reduced iron porphyrins such as hematin. Many of these are also dechlorinated by cultures of certain microorganisms, probably by the same mechanism. Such compounds, with a few exceptions, have been found to undergo reductive dechlorination in the environment. Aromatic compounds such as halobenzenes, halophenols and halobenzoic acids appear not to react with reduced iron porphyrins. Some of these however undergo reductive dechlorination both in the environment and in the laboratory. The reaction is generally associated with methanogenic bacteria. There is evidence for the existence of a number of different dechlorinating enzymes specific for different isomers. Recently it has been found that many components of polychlorinated biphenyls (PCBs), long considered to be virtually totally resistant to environmental degradation, may be reductively dechlorinated both in the laboratory and in nature. These findings suggest that many environmental contaminants may prove to be less persistent than was previously feared.

The diamagnetic anisotropies of crystals of aromatic and aliphatic compounds, mostly of known structure, have been measured, and the principal molecular susceptibilities deduced from these and the molecular orientations. In a few cases where the absolute susceptibility is not known with certainty, the molecular anisotropy may, nevertheless, be calculated with a good degree of accuracy. The molecular susceptibilities and anisotropy are related to the molecular shape and constitution, and to the bond character; and in the case of aromatic compounds they are strongly influenced by substitution, which, in general, markedly decreases the anisotropy. This decrease varies not only with the nature of the substituents (heavy atom, compact group or aliphatic chain) but with their positions on the nucleus. This may give some information concerning the effect of substitution on conjugation, especially when correlated with changes in bond lengths and angles.


1998 ◽  
Vol 180 (14) ◽  
pp. 3503-3508 ◽  
Author(s):  
Volker Seibert ◽  
Elena M. Kourbatova ◽  
Ludmila A. Golovleva ◽  
Michael Schlömann

ABSTRACT Maleylacetate reductases (EC 1.3.1.32 ) have been shown to contribute not only to the bacterial catabolism of some usual aromatic compounds like quinol or resorcinol but also to the degradation of aromatic compounds carrying unusual substituents, such as halogen atoms or nitro groups. Genes coding for maleylacetate reductases so far have been analyzed mainly in chloroaromatic compound-utilizing proteobacteria, in which they were found to belong to specialized gene clusters for the turnover of chlorocatechols or 5-chlorohydroxyquinol. We have now cloned the gene macA, which codes for one of apparently (at least) two maleylacetate reductases in the gram-positive, chlorophenol-degrading strain Rhodococcus opacus 1CP. Sequencing of macA showed the gene product to be relatively distantly related to its proteobacterial counterparts (ca. 42 to 44% identical positions). Nevertheless, like the known enzymes from proteobacteria, the cloned Rhodococcusmaleylacetate reductase was able to convert 2-chloromaleylacetate, an intermediate in the degradation of dichloroaromatic compounds, relatively fast and with reductive dehalogenation to maleylacetate. Among the genes ca. 3 kb up- and downstream of macA, none was found to code for an intradiol dioxygenase, a cycloisomerase, or a dienelactone hydrolase. Instead, the only gene which is likely to be cotranscribed with macA encodes a protein of the short-chain dehydrogenase/reductase family. Thus, the R. opacus maleylacetate reductase genemacA clearly is not part of a specialized chlorocatechol gene cluster.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Yingru Wang ◽  
Xiaohua Lu

Hexachlorobenzene (HCB) is a persistent organic pollutant and poses great threat on ecosystem and human health. In order to investigate the degradation law of HCB, a RuO2/Ti material was used as the anode, meanwhile, zinc, stainless steel, graphite, and RuO2/Ti were used as the cathode, respectively. The gas chromatography (GC) was used to analyze the electrochemical products of HCB on different cathodes. The results showed that the cathode materials significantly affected the dechlorination efficiency of HCB, and the degradation of HCB was reductive dechlorination which occurred only on the cathode. During the reductive process, chlorine atoms were replaced one by one on various intermediates such as pentachlorobenzene, tetrachlorobenzene, and trichlorobenzene occurred; the trichlorobenzene was obtained when zinc was used as cathode. The rapid dechlorination of HCB suggested that the electrochemical method using zinc or stainless steel as cathode could be used for remediation of polychlorinated aromatic compounds in the environment. The dechlorination approach of HCB by stainless steel cathode could be proposed.


Sign in / Sign up

Export Citation Format

Share Document