organic molecules
Recently Published Documents


TOTAL DOCUMENTS

7232
(FIVE YEARS 1412)

H-INDEX

172
(FIVE YEARS 22)

Science ◽  
2022 ◽  
Vol 375 (6577) ◽  
pp. 172-177
Author(s):  
A. Steele ◽  
L. G. Benning ◽  
R. Wirth ◽  
A. Schreiber ◽  
T. Araki ◽  
...  

Abiotic formation of organic molecules Mars rovers have found complex organic molecules in the ancient rocks exposed on the planet’s surface and methane in the modern atmosphere. It is unclear what processes produced these organics, with proposals including both biotic and abiotic sources. Steele et al . analyzed the nanoscale mineralogy of the Mars meteorite ALH 84001 and found evidence of organic synthesis driven by serpentinization and carbonation reactions that occurred during the aqueous alteration of basalt rock by hydrothermal fluids. The results demonstrate that abiotic production of organic molecules operated on Mars 4 billion years ago. —KTS


Author(s):  
Kaining Duanmu ◽  
Amity Andersen ◽  
Peiyuan Gao ◽  
Wei Wang ◽  
Vijayakumar Murugesan

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 517
Author(s):  
Bin Lu ◽  
Wen-Jing Xiao ◽  
Jia-Rong Chen

Visible-light photoredox catalysis has attracted tremendous interest within the synthetic community. As such, the activation mode potentially provides a more sustainable and efficient platform for the activation of organic molecules, enabling the invention of many controlled radical-involved reactions under mild conditions. In this context, amide synthesis via the strategy of photoredox catalysis has received growing interest due to the ubiquitous presence of this structural motif in numerous natural products, pharmaceuticals and functionalized materials. Employing this strategy, a wide variety of amides can be prepared effectively from halides, arenes and even alkanes under irradiation of visible light. These methods provide a robust alternative to well-established strategies for amide synthesis that involve condensation between a carboxylic acid and amine mediated by a stoichiometric activating agent. In this review, the representative progresses made on the synthesis of amides through visible light-mediated radical reactions are summarized.


2022 ◽  
Author(s):  
Stefania Impellizzeri ◽  
Gregory J, Hodgson ◽  
Nicholas P. Dogantzis

<p>Plasmonic metal nanoparticles can impact the behaviour of organic molecules in a number of ways, including enhancing or quenching fluorescence. Only through a comprehensive understanding of the fundamental photophysical processes regulating nano-molecular interactions can these effects be controlled, and exploited to the fullest extent possible. Metal-enhanced fluorescence (MEF) is governed by two underlying processes, increased rate of fluorophore excitation and increased fluorophore emission, the balance between which has implications for optimizing hybrid nanoparticle-molecular systems for various applications. We report groundbreaking work on the use of single molecule fluorescence microscopy to distinguish between the two mechanistic components of MEF, in a model system consisting of two analogous boron dipyrromethene (BODIPY) fluorophores and triangular silver nanoparticles (AgNP). We demonstrate that the increased excitation MEF mechanism occurs to approximately the same extent for both dyes, but that the BODIPY with the higher quantum yield of fluorescence experiences a greater degree of MEF via the increased fluorophore emission mechanism, and higher overall enhancement, as a result of its superior ability to undergo near-field interactions with AgNP. We foresee that this knowledge and methodology will be used to tailor MEF to meet the needs of different applications, such as those requiring maximum enhancement of fluorescence intensity or instead prioritizing excited-state photochemistry. </p>


2022 ◽  
Author(s):  
Stefania Impellizzeri ◽  
Gregory J, Hodgson ◽  
Nicholas P. Dogantzis

<p>Plasmonic metal nanoparticles can impact the behaviour of organic molecules in a number of ways, including enhancing or quenching fluorescence. Only through a comprehensive understanding of the fundamental photophysical processes regulating nano-molecular interactions can these effects be controlled, and exploited to the fullest extent possible. Metal-enhanced fluorescence (MEF) is governed by two underlying processes, increased rate of fluorophore excitation and increased fluorophore emission, the balance between which has implications for optimizing hybrid nanoparticle-molecular systems for various applications. We report groundbreaking work on the use of single molecule fluorescence microscopy to distinguish between the two mechanistic components of MEF, in a model system consisting of two analogous boron dipyrromethene (BODIPY) fluorophores and triangular silver nanoparticles (AgNP). We demonstrate that the increased excitation MEF mechanism occurs to approximately the same extent for both dyes, but that the BODIPY with the higher quantum yield of fluorescence experiences a greater degree of MEF via the increased fluorophore emission mechanism, and higher overall enhancement, as a result of its superior ability to undergo near-field interactions with AgNP. We foresee that this knowledge and methodology will be used to tailor MEF to meet the needs of different applications, such as those requiring maximum enhancement of fluorescence intensity or instead prioritizing excited-state photochemistry. </p>


Nano Futures ◽  
2022 ◽  
Author(s):  
Olga Konevtsova ◽  
Daria S. Roshal ◽  
Sergei B. Rochal

Abstract Moiré patterns (MPs), arising from the superposition of two lattices with close periods, are tightly related to the physicochemical properties of bilayer nanostructures. Here, we develop the theory of complex MPs emerging in twisted bilayer graphene and planar nets of double-walled nanotubes at significant relative twist and/or deformation of layers. The proposed theory clarifies the physicochemical regularities arising at sorting of single-walled carbon nanotubes (SWCNTs) by organic molecules, which self-assemble in regular coatings on both the tubes and planar graphene. We introduce and consider an outer tubular virtual lattice that is a parent structure for the deposited coating and due to this fact, its existence is crucial for the coating formation. As we show, such outer lattices exist only for successfully sorted SWCNTs and the superposition between the outer lattice and SWCNT forms a specific long-period MP. We explain known experimental results of SWCNT sorting by molecules of flavin group, poly(9,9-dioctylfluorene-2,7-diyl) (PFO), and poly [(m-phenylenevinylene)-alt-(p-phenylenevinylene)] (PmPV). Also, our approach points out other organic molecules and polymers suitable for effective CNT sorting.


2022 ◽  
Author(s):  
Mark Walsh ◽  
James Barclay ◽  
Callum Begg ◽  
Jinyi Xuan ◽  
Matthew Kitching

Conglomerate crystallisation is the behaviour responsible for spontaneous resolution and the discovery of molecular chirality by Pasteur. The phenomenon of conglomerate crystallisation of chiral organic molecules has been left largely undocumented and offers synthetic chemists a potential new chiral pool not reliant on biological systems to supply stereochemical information. While other crystallographic behaviours can be interrogated by automated searching, conglomerate crystallisations are not identified within the Cambridge Structural Database (CSD) and are therefore not accessible by conventional means. By conducting a manual search of the CSD, a list of over 1,700 chiral species capable of conglomerate crystallisation was curated by inspection of the synthetic routes described in each publication. The majority of these are produced by synthetic chemists who seldom note and rarely exploit the implications this phenomenon can have on the enantioenrichment of their crystalline materials. We propose that this list represents a limitless chiral pool which will continually grow in size as more conglomerate crystals are synthesised and recorded.


2022 ◽  
Vol 22 (1) ◽  
pp. 155-171
Author(s):  
Arto Heitto ◽  
Kari Lehtinen ◽  
Tuukka Petäjä ◽  
Felipe Lopez-Hilfiker ◽  
Joel A. Thornton ◽  
...  

Abstract. The rate at which freshly formed secondary aerosol particles grow is an important factor in determining their climate impacts. The growth rate of atmospheric nanoparticles may be affected by particle-phase oligomerization and decomposition of condensing organic molecules. We used the Model for Oligomerization and Decomposition in Nanoparticle Growth (MODNAG) to investigate the potential atmospheric significance of these effects. This was done by conducting multiple simulations with varying reaction-related parameters (volatilities of the involved compounds and reaction rates) using both artificial and ambient measured gas-phase concentrations of organic vapors to define the condensing vapors. While our study does not aim at providing information on any specific reaction, our results indicate that particle-phase reactions have significant potential to affect the nanoparticle growth. In simulations in which one-third of a volatility basis set bin was allowed to go through particle-phase reactions, the maximum increase in growth rates was 71 % and the decrease 26 % compared to the base case in which no particle-phase reactions were assumed to take place. These results highlight the importance of investigating and increasing our understanding of particle-phase reactions.


2022 ◽  
pp. 29-71
Author(s):  
Graeme Puxty ◽  
Marcel Maeder ◽  
Robert Bennett

Author(s):  
Eric Herbst ◽  
Robin T. Garrod

The observation and synthesis of organic molecules in interstellar space is one of the most exciting and rapidly growing topics in astrochemistry. Spectroscopic observations especially with millimeter and submillimeter waves have resulted in the detection of more than 250 molecules in the interstellar clouds from which stars and planets are ultimately formed. In this review, we focus on the diverse suggestions made to explain the formation of Complex Organic Molecules (COMs) in the low-temperature interstellar medium. The dominant mechanisms at such low temperatures are still a matter of dispute, with both gas-phase and granular processes, occurring on and in ice mantles, thought to play a role. Granular mechanisms include both diffusive and nondiffusive processes. A granular explanation is strengthened by experiments at 10 K that indicate that the synthesis of large molecules on granular ice mantles under space-like conditions is exceedingly efficient, with and without external radiation. In addition, the bombardment of carbon-containing ice mantles in the laboratory by cosmic rays, which are mainly high-energy protons, can lead to organic species even at low temperatures. For processes on dust grains to be competitive at low temperatures, however, non-thermal desorption mechanisms must be invoked to explain why the organic molecules are detected in the gas phase. Although much remains to be learned, a better understanding of low-temperature organic syntheses in space will add both to our understanding of unusual chemical processes and the role of molecules in stellar evolution.


Sign in / Sign up

Export Citation Format

Share Document