scholarly journals Weighted Logics for Nested Words and Algebraic Formal Power Series

2010 ◽  
Vol 6 (1) ◽  
Author(s):  
Christian Mathissen
2014 ◽  
Vol 25 (05) ◽  
pp. 641-666 ◽  
Author(s):  
MANFRED DROSTE ◽  
BUNDIT PIBALJOMMEE

Nested words have been introduced by Alur and Madhusudan as a model for e.g. recursive programs or XML documents and have received much recent interest. In this paper, we investigate a quantitative automaton model and a quantitative logic for nested words. The behavior resp. the semantics map nested words to weights which are taken from a strong bimonoid. Strong bimonoids can be viewed as semirings without requiring the distributivity assumption which was essential in the classical theory of formal power series; strong bimonoids include e.g. all bounded lattices and many other structures from multi-valued logics. Our main results show that weighted nested word automata and suitable weighted MSO logics are expressively equivalent. This extends the classical Büchi-Elgot result from words to a weighted setting for nested words.


2003 ◽  
Vol 184 (2) ◽  
pp. 369-383 ◽  
Author(s):  
Manfred Droste ◽  
Guo-Qiang Zhang

2021 ◽  
Vol 76 (1) ◽  
Author(s):  
Donatella Merlini

AbstractIn the context of Riordan arrays, the problem of determining the square root of a Bell matrix $$R={\mathcal {R}}(f(t)/t,\ f(t))$$ R = R ( f ( t ) / t , f ( t ) ) defined by a formal power series $$f(t)=\sum _{k \ge 0}f_kt^k$$ f ( t ) = ∑ k ≥ 0 f k t k with $$f(0)=f_0=0$$ f ( 0 ) = f 0 = 0 is presented. It is proved that if $$f^\prime (0)=1$$ f ′ ( 0 ) = 1 and $$f^{\prime \prime }(0)\ne 0$$ f ″ ( 0 ) ≠ 0 then there exists another Bell matrix $$H={\mathcal {R}}(h(t)/t,\ h(t))$$ H = R ( h ( t ) / t , h ( t ) ) such that $$H*H=R;$$ H ∗ H = R ; in particular, function h(t) is univocally determined by a symbolic computational method which in many situations allows to find the function in closed form. Moreover, it is shown that function h(t) is related to the solution of Schröder’s equation. We also compute a Riordan involution related to this kind of matrices.


Algebra ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Laurent Poinsot

A locally finite category is defined as a category in which every arrow admits only finitely many different ways to be factorized by composable arrows. The large algebra of such categories over some fields may be defined, and with it a group of invertible series (under multiplication). For certain particular locally finite categories, a substitution operation, generalizing the usual substitution of formal power series, may be defined, and with it a group of reversible series (invertible under substitution). Moreover, both groups are actually affine groups. In this contribution, we introduce their coordinate Hopf algebras which are both free as commutative algebras. The semidirect product structure obtained from the action of reversible series on invertible series by anti-automorphisms gives rise to an interaction at the level of their coordinate Hopf algebras under the form of a smash coproduct.


2011 ◽  
Vol 31 (1) ◽  
pp. 331-343 ◽  
Author(s):  
Steven T. Dougherty ◽  
Liu Hongwei

Sign in / Sign up

Export Citation Format

Share Document