scholarly journals CENTRAL ASIA SEISMIC HAZARD ASSESSMENT (CASHA) “COMPLETE” CATALOGUE OF EARTHQUAKES

2021 ◽  
Author(s):  
T Onur ◽  
R Gok ◽  
K Mackey

2005 ◽  
Vol 5 (1) ◽  
pp. 43-47 ◽  
Author(s):  
M. Jaboyedoff ◽  
M.-H. Derron ◽  
G. M. Manby

Abstract. Uplift gradients can provide the location of highly strained zones, which can be considered to be seismic. The Turan block (Central Asia) contains zones with high gradient of uplift velocities, above the threshold 0.04mm km-1year-1. Some of these zones are associated with important seismic activity and others are not correlated with any recent important recorded earthquakes, however, recent faults scarps as well as diverted rivers may indicate a recent tectonic activity. This threshold of gradient is probably a significant rheologic property of the upper crust. On the basis of these considerations the Uzboy river area is proposed as a potential high seismic hazard zone.



Author(s):  
Ankhtsetseg D ◽  
Odonbaatar Ch ◽  
Mоngоnsuren D ◽  
Bayarsaikhan E ◽  
Dembereldulam M

Central Asia is one of the seismically most active regions in the world. Its complex seismicity is due to the collision of the Eurasian and Indian plates, which has resulted in some of the world’s largest intra-plate events over history. The region is dominated by reverse faulting over strike slip and normal faulting events.The GSHAP project, aiming at hazard assessment on a global scale, indicates that the territory of Bayankhongor aimag, Mongolia, in Central Asia is characterized by maximum bedrock peak ground accelerations for 10% probability of exceedance in 50 years as medium as in range of 80 to 160cm/s2. In this study, which has been carried out within the framework of the project “Seismic microzoning map of center of 12 aimags, Mongolia”, the area source model and different kernel approaches are used for a probabilistic seismic hazard assessment for the Mongolia. The seismic hazard is assessed considering shallow (depth <50 km) seismicity only and employs an updated (with respect to previous projects) earthquake catalogue for the region. The hazard maps, shown in terms of 10% probability of exceedance in 50 years, are derived by using the Open Deterministic and Probabilistic Seismic Hazard Assessment (ODPSHA), which is based on the Cornell methodology. The maximum hazard observed in the region reaches 93-98 cm/s2 , which in intensity corresponds to VII in MSK64 scale in the centre of Bayankhongor aimag for 475 years mean return period.



2012 ◽  
Vol 37 ◽  
pp. 84-91 ◽  
Author(s):  
D. Bindi ◽  
K. Abdrakhmatov ◽  
S. Parolai ◽  
M. Mucciarelli ◽  
G. Grünthal ◽  
...  


2020 ◽  
Vol 11 (3) ◽  
pp. 606-623
Author(s):  
T. U. Artikov ◽  
R. S. Ibragimov ◽  
T. L. Ibragimova ◽  
M. A. Mirzaev

Seismic intensity assessment in points of a macroseismic scale plays an important role for researching the seismic history of areas characterized by active seismicity, as well as for construction (and updating) of seismic zoning maps in various scales. Macroseismic scale points are generally referred to in construction standards applied in the majority of post-Soviet states. In our study aimed to model the macroseismic field of earthquakes, a large volume of macroseismic data on Central Asia was analyzed, and coefficients used in Blake–Shebalin and Covesligeti equations were aligned. This article presents a generalized dependence model of macroseismic intensity attenuation with distance. The model takes into account seismic load features determined by various depths of earthquakes. The ratios of small and big axes of the ellipse, that approximates real isoseists, are estimated with respect to seismic scale points, earthquake depths and magnitudes. The East Uzbekistan area is studied as an example to investigate whether seismic hazard assessment values may differ depending on a chosen law of seismic influence intensity attenuation with distance.





2015 ◽  
Vol 58 (1) ◽  
Author(s):  
Shahid Ullah ◽  
Dino Bindi ◽  
Marco Pilz ◽  
Laurentiu Danciu ◽  
Graeme Weatherill ◽  
...  

<p>Central Asia is one of the seismically most active regions in the world. Its complex seismicity due to the collision of the Eurasian and Indian plates has resulted in some of the world’s largest intra-plate events over history. The region is dominated by reverse faulting over strike slip and normal faulting events. The GSHAP project (1999), aiming at a hazard assessment on a global scale, indicated that the region of Central Asia is characterized by peak ground accelerations for 10% probability of exceedance in 50 years as high as 9 m/s<sup>2</sup>. In this study, carried out within the framework of the EMCA project (Earthquake Model Central Asia), the area source model and different kernel approaches are used for a probabilistic seismic hazard assessment (PSHA) for Central Asia. The seismic hazard is assessed considering shallow (depth &lt; 50 km) seismicity only and employs an updated (with respect to previous projects) earthquake catalog for the region. The seismic hazard is calculated in terms of macroseismic intensity (MSK-64), intended to be used for the seismic risk maps of the region. The hazard maps, shown in terms of 10% probability of exceedance in 50 years, are derived by using the OpenQuake software [Pagani et al. 2014], which is an open source software tool developed by the GEM (Global Earthquake Model) foundation. The maximum hazard observed in the region reaches an intensity of around 8 in southern Tien Shan for 475 years mean return period. The maximum hazard estimated for some of the cities in the region, Bishkek, Dushanbe, Tashkent and Almaty, is between 7 and 8 (7-8), 8.0, 7.0 and 8.0 macroseismic Intensity, respectively, for 475 years mean return period, using different approaches. The results of different methods for assessing the level of seismic hazard are compared and their underlying methodologies are discussed.</p>



2021 ◽  
Vol 14 (9) ◽  
Author(s):  
Etoundi Delair Dieudonné Ndibi ◽  
Eddy Ferdinand Mbossi ◽  
Nguet Pauline Wokwenmendam ◽  
Bekoa Ateba ◽  
Théophile Ndougsa-Mbarga


2014 ◽  
Vol 85 (6) ◽  
pp. 1316-1327 ◽  
Author(s):  
C. Beauval ◽  
H. Yepes ◽  
L. Audin ◽  
A. Alvarado ◽  
J.-M. Nocquet ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document