scholarly journals Methodology Used for Total System Performance Assessment of the Potential Nuclear Waste Repository at Yucca Mountain (USA)

2001 ◽  
Author(s):  
E. Devibec ◽  
S.D. Sevougian ◽  
P.D. Mattie ◽  
J.A. McNeish ◽  
S. Mishra
2002 ◽  
Author(s):  
Jr. G.J. Saulnier ◽  
K.P. Lee ◽  
S. Mehta ◽  
S.D. Sevougian ◽  
D. Kalinich ◽  
...  

Author(s):  
Jerry McNeish ◽  
Peter Swift ◽  
Rob Howard ◽  
David Sevougian ◽  
Donald Kalinich ◽  
...  

The development of a deep geologic repository system in the United States has progressed to the preparation of an application for a license from the U.S. Nuclear Regulatory Commission. The project received site recommendation approval from the U.S. President in early 2002. The next phase of the project involves development of the license application (LA) utilizing the vast body of information accumulated in study of the site at Yucca Mountain, Nevada. Development of the license application involves analyses of the total system performance assessment (TSPA) of the repository, the TSPA-LA. The TSPA includes the available relevant information and model analyses from the various components of the system (e.g., unsaturated geologic zone, engineered system (waste packaging and drift design), and saturated geologic zone) (see Fig. 1 for nominal condition components), and unites that information into a single computer model used for evaluating the potential future performance or degradation of the repository system. The primary regulatory guidance for the repository system is found in 10 CFR 63, which indicates the acceptable risk to future populations from the repository system. The performance analysis must be traceable and transparent, with a defensible basis. The TSPA-LA is being developed utilizing state-of-the-art modeling software and visualization techniques, building on a decade of experience with such analyses. The documentation of the model and the analyses will be developed with transparency and traceability concepts to provide an integrated package for reviewers. The analysis relies on 1000’s of pages of supporting information, and multiple software and process model analyses. The computational environment represents the significant advances in the last 10 years in computer workstations. The overall approach will provide a thorough, transparent compliance analysis for consideration by the U.S. Nuclear Regulatory Commission in evaluating the Yucca Mountain repository.


Author(s):  
Joosep Pata ◽  
Alan H. Tkaczyk

It is necessary to consider the complexities of both natural and engineered components of a nuclear waste repository since fission products and minor actinides remain harmful to the environment for tens of thousands of years. In safety and performance assessments often used in decision-making about repository designs, the effect of uncertain initial guesses on the models’ output must be understood. As the necessary safe times and hence the simulated times are often in the order of magnitude of hundreds of thousands of years, uncertain initial values become increasingly important. To minimize the danger from high-level radioactive waste and to make informed decisions over designs, sensitivity analysis of the models used should be performed. The Simplified Total System Performance Assessment (STSPA) model developed by Golder Associates Inc., Booz-Allen Hamilton, Stone and Webster and the University of Nevada Reno and used in the Yucca Mountain nuclear waste repository performance assessment is analyzed for sensitivity by varying the activities of technetium-99 and iodine-129 by several orders of magnitude. The resultant dose to a maximally-exposed individual over time periods of 100,000 and 1,000,000 years is compared to the relevant regulatory limits. Incorrect estimates can be seen to have large effects on the behavior of the model while the method used allows conclusions to be drawn about the robustness of the model.


1993 ◽  
Vol 333 ◽  
Author(s):  
Kenneth J. Jackson ◽  
Susan A. Carroll

It is thought that a significant amount of diesel fuel and other hydrocarbon-rich phases may remain inside the candidate nuclear waste repository at Yucca Mountain after construction and subsequent emplacement of radioactive waste. Although the proposed repository horizon is above the water table, the remnant hydrocarbon phases may react with hydrothermal solutions generated by high temperature conditions that will prevail for a period of time in the repository. The preliminary experimental results of this study show that diesel fuel hydrous pyrolysis is minimal at 200°C and 70 bars. The composition of the diesel fuel remained constant throughout the experiment and the concentration of carboxylic acids in the aqueous phases was only slightly above the detection limit (1–2 ppm) of the analytical technique.


Sign in / Sign up

Export Citation Format

Share Document