Antinociceptive Effects of VV-Hemorphin-5 Peptide Analogues Containing Aminophosphonate Moiety in Mouse Formalin Model of Pain

2020 ◽  
Vol 27 ◽  
Author(s):  
Borislav Assenov ◽  
Daniela Pechlivanova ◽  
Elena Dzhambazova ◽  
Petia Peneva ◽  
Petar Todorov

Background: Hemorphins are endogenous hemoglobin-derived peptides that belong to the family of “atypical” opioid peptides with both affinities to opioid receptors and ability to release other endogenous opioid peptides. Objective: In the present study, peptide analogues of Valorphin (VV-hemorphin-5) containing amino phosphonate moiety synthesized by solid-phase peptide synthesis (Fmoc-strategy) were investigated for their potential antinociceptive activities and compared to the reference VV-H in formalin-induced model of acute and inflammatory pain in mice. Methods: The hemorphin analogues were prepared by replacement of the one and/or two N-terminal Val in VV-hemorphin5 (VV-H) with ((dimethoxy phosphoryl) methyl)-L-valine and ((dimethoxy phosphoryl) methyl)-L-leucine to obtained the compounds pVV-H, pL-H, and pLV-H. Aiming to additionally prove the importance of amino acid valine, we introduced the ((dimethoxy phosphoryl) methyl)-L-leucine to the N-side of VV-hemorphin-5 (pLVV-H). The experiments were carried out on adult male ICR mice. All peptides were administered intracerebroventricularly at three doses (50, 25 and 12,5 µg/mouse). We have studied the effects of the peptides on acute (1st phase) and inflammatory (2nd phase) pain reaction using un experimental model with intraplantar formalin injection. Results: VV-H showed a significant antinociceptive effect both in the acute and inflammatory phases of the test. Although Valorphin hexa-, hepta-, and octapeptide analogs demonstrated a significant antinociceptive effect, they showed substantial differences considering their effective dose and the phase of the test as compared to the Valorphin. Discussion: Data showed that modified heptapeptides pVV-H and pLV-H exerted the same or better antinociception in acute and inflammatory pain, in comparison to the reference peptide, while pL-H and pLVV-H analogues were less effective. Conclusion: Our study contributes to the elucidation of the role of Valine and the number of amino acid residues in the structure of hemorphin peptide analogs in their effectiveness in suppressing both acute and inflammatory experimental pain.

Author(s):  
luis camacho III ◽  
Bryan J. Lampkin ◽  
Brett VanVeller

We describe a method to protect the sensitive stereochemistry of the thioamide—in analogy to the protection of the functional groups of amino acid side chains—in order to preserve the thioamide moiety during peptide elongation.<br>


Author(s):  
Linda E. Cammish ◽  
Steven A. Kates

The concept of solid phase peptide synthesis introduced by Merrifield in 1963 involves elongating a peptide chain on a polymeric support via a two-step repetitive process: removal of the Nα-protecting group and coupling of the next incoming amino acid. A second feature of the solid phase technique is that reagents are added in large excesses which can be removed by simple filtration and washing. Since these operations occur in a single reaction vessel, the entire process is amenable to automation. Essential requirements for a fully automatic synthesizer include a set of solvent and reagent reservoirs, as well as a suitable reaction vessel to contain the solid support and enable mixing with solvents and reagents. Additionally, a system is required for selection of specific solvents and reagents with accurate measurement for delivery to and removal from the reaction vessel, and a programmer to facilitate these automatic operations is necessary. The current commercially available instruments offer a variety of features in terms of their scale (15 mg to 5 kg of resin), chemical compatibility with 9-fluorenylmethyloxycarbonyl/tert-butyl (Fmoc/tBu) and tert-butyloxycarbonyl/ benzyl (Boc/Bzl)-based methods, software (reaction monitoring and feedback control), and flexibility (additional washing and multiple activation strategies). In addition, certain instruments are better suited for the synthesis of more complex peptides such as cyclic, phosphorylated, and glycosylated sequences while others possess the ability to assemble a large number of peptide sequences. The selection of an instrument is dependent on the requirements and demands of an individual laboratory. This chapter will describe the features of the currently available systems. As the field of solid phase synthesis evolved, manufacturers designed systems based on the synergy between chemistry and engineering. A key component to an instrument is the handling of amino acids and their subsequent activation to couple to a polymeric support. The goal of an automated system is to duplicate conditions that provide stability to reactive species that might decompose. Standard protocols for automated synthesis incorporate carbodiimide, phosphonium, and aminium/uronium reagents, preformed active esters, and acid fluorides. For further details on coupling methods, see Chapter 3. A second issue related to coupling chemistry is the time required to dissolve an amino acid and store this solution.


Author(s):  
Paolo Mascagni

In solid phase peptide synthesis (SPPS), deletion sequences are generated at each addition of amino acid due to non-quantitative coupling reactions. Their concentration increases exponentially with the length of the peptide chain, and after many cycles not only do they represent a large proportion of the crude preparation, but they can also exhibit physicochemical characteristics similar to the target sequence. Thus, these deletion-sequence contaminants present major problems for removal, or even detection. In general, purification of synthetic peptides by conventional chromatography is based on hydrophobicity differences (using RP-HPLC) and charge differences (using ion-exchange chromatography). For short sequences, the use of one or both techniques is in general sufficient to obtain a product with high purity. However, on increasing the number of amino acid residues, the peptide secondary and progressively tertiary and quaternary structures begin to play an important role and the conformation of the largest peptides can decisively affect their retention behaviour. Furthermore, very closely related impurities such as deletion sequences lacking one or few residues can be chromatographically indistinguishable from the target sequence. Therefore, purification of large synthetic peptides is a complex and time-consuming task that requires the use of several separation techniques with the inevitable dramatic reduction in yields of the final material. Permanent termination (capping) of unreacted chains using a large excess of an acylating agent after each coupling step prevents the formation of deletion sequences and generates N-truncated peptides. However, even under these more favourable conditions, separation of the target sequence from chromatographically similar N-capped polypeptides requires extensive purification. If the target sequence could be specifically and transiently labelled so that the resulting product were selectively recognized by a specific stationary phase, then separation from impurities should be facilitated. This chapter deals with such an approach and in particular with the purification of large polypeptides, assembled by solid phase strategy, using lipophilic and biotin-based 9-fluorenylmethoxycarbonyl (Fmoc) chromatographic probes. Assuming that the formation of deletion sequences is prevented by capping unreacted chains, a reciprocal strategy can be applied that involves functional protection of all polymer-supported peptide chains that are still growing, with a specially chosen affinity reagent or chromatographic probe.


2005 ◽  
Vol 46 (37) ◽  
pp. 6369-6371 ◽  
Author(s):  
Minghong Ni ◽  
Emiliano Esposito ◽  
Bernard Kaptein ◽  
Quirinus B. Broxterman ◽  
Alma Dal Pozzo

Sign in / Sign up

Export Citation Format

Share Document