scholarly journals Prolylcarboxypeptidase Independently Activates Plasma Prekallikrein (Fletcher Factor)

2014 ◽  
Vol 14 (9) ◽  
pp. 1173-1185 ◽  
Author(s):  
J. Wang ◽  
A. Matafonov ◽  
H. Madkhali ◽  
F. Mahdi ◽  
D. Watson ◽  
...  
Keyword(s):  
Pathology ◽  
1984 ◽  
Vol 16 (3) ◽  
pp. 362-363
Author(s):  
M.G. Harris ◽  
T. Exner ◽  
K.A. Rickard ◽  
H. Kronenberg

Biochemistry ◽  
1979 ◽  
Vol 18 (25) ◽  
pp. 5743-5750 ◽  
Author(s):  
Ronald L. Heimark ◽  
Earl W. Davie

1974 ◽  
Vol 5 (3) ◽  
pp. 375-378 ◽  
Author(s):  
Helge Stormorken ◽  
Charles F. Abildgaard

Blood ◽  
1975 ◽  
Vol 46 (5) ◽  
pp. 761-768 ◽  
Author(s):  
MJ Lacombe ◽  
B Varet ◽  
JP Levy

Abstract This paper reports an asymptomatic coagulation defect responsible for an abnormality at the contact phase of blood coagulation in vitro, distinct from Hageman factor and Fletcher factor deficiencies. Coagulation studies in a 50-yr-old French woman without bleeding tendency revealed the following results: whole-blood clotting time in glass tubes and activated partial thromboplastin time with kaolin and ellagic acid were greatly prolonged; one-stage prothrombin was normal; no circulating anticoagulant was detected, and the infusion of normal plasma corrected the coagulation defect with an estimated half-life of 6.5 days; the levels of factor VIII, IX, XI, and XII were normal; mutual correction was obtained with a Fletcher factor-deficient plasma; the level of whole complement was normal. Studies of the contact phase of blood coagulation and contact-induced fibrinolysis showed the same abnormalities as in Hageman factor- and Fletcher-deficient plasmas. These results indicate that the patient's plasma is deficient in a previously undescribed coagulation factor, which participates in the initial stage of the blood coagulation process in vitro. Family studies revealed consanguinity in the propositus' parents. The assay of this newly described factor in the propositus' children revealed a partial defect, compatible with a heterozygous state, in three of the four tested children. This indicates a recessive inheritance of this new blood coagulation defect.


1975 ◽  
Author(s):  
C. Kluft

The rate of contact activation of fibrinolysis is considered to reflect the activation rate of proactivator and Hageman factor. This study was undertaken to determine the role of Cl-inactivator in this process.Contact activation of fibrinolysis was performed according to Ogston et al. (1969), J. Clin. Invest. 48, 1786-1801. The rate of activity generation was measured in plasma with various levels of Cl-inactivator and appeared to be dependent on that level; i.e., a high level of Cl-inactivator corresponds with a slow rate of activity generation.It has recently been demonstrated that the fibrinolytic activity of euglobulin fractions is strongly inhibited by Cl-inactivator also present in this fraction. The activity generation of contact activation is found to be accompanied by a gradual decrease in functional Cl-inactivator in the euglobulin fraction. The fibrinolytic activity is set free by this disappearance of inhibition.It is concluded that the rate of contact activation of fibrinolysis must be interpreted in terms of the inactivation of Cl-inactivator rather than of the activation of proenzymes. All enzymes capable of inactivating Cl-inactivator can contribute to the process of contact activation of fibrinolysis. This mechanism might account for the observed defects in fibrinolysis in vitro in Fletcher Factor deficient patients.


1979 ◽  
Vol 57 (s5) ◽  
pp. 89s-92s ◽  
Author(s):  
F. H. M. Derkx ◽  
B. N. Bouma ◽  
H. L. Tan-Tjiong ◽  
M. A. D. H. Schalekamp

1. Human plasma was treated at 4°C with acid, trypsin, plasmin, streptokinase, urokinase, active Hageman factor fragment (β-XIIa) and β-XIIa-activated plasma prekallikrein (Fletcher factor). The conversion of inactive into active renin (activation) was studied in normal plasma (n = 10), Hageman factor-deficient plasma (n = 2), Fletcher factor-deficient plasma (n = 1) and plasminogen-free plasma (n = 4). 2. In normal plasma inactive renin was activated at pH 7·5 after treatment at pH < 4·0; at pH 3·3 the results were the same as with trypsin. This was also the case in plasminogen-free plasma. In Hageman factor-deficient plasma and in Fletcher factor-deficient plasma, however, the quantities of renin that were activated after acidification were much smaller than with trypsin. The addition of physiological amounts of active kallikrein to pH 3·3-pretreated Hageman factor-deficient plasma caused complete activation of renin. In contrast, the addition of active Hageman factor fragment to pH 3·3-pretreated Fletcher factor-deficient plasma had little or no effect. 3. Plasmin, streptokinase-activated plasminogen and urokinase-activated plasminogen activated inactive renin in pH 4·0-pretreated normal plasma as well as in pH 4·0-pretreated Hageman factor-deficient plasma and Fletcher factor-deficient plasma. 4. It is concluded that inactive renin is activated by two separate proteolytic pathways: one pathway depends on both Hageman factor and plasma prekallikrein, and the other pathway depends on plasminogen. In the Hageman factor-dependent pathway plasma kallikrein and not Hageman factor is the major activator of inactive renin. It is assumed that pH 3·3-treatment of plasma destroys the major inhibitors of kallikrein and that pH 4·0-treatment destroys the major inhibitor of plasmin.


Sign in / Sign up

Export Citation Format

Share Document