scholarly journals Development of Scum Geometrical Monitoring Beneath Floating Covers Aided by UAV Photogrammetry

Abstract. Floating covers are used on anaerobic lagoons at waste-water treatment plants for odour control and the harvesting of biogas. Scum is an unwanted by-product of the anaerobic digestion of raw sewage. This matter can form into a large mass of material, and when it floats to the surface and solidifies, it is called a scumberg to differentiate it from the scum which may still be in a semi-solid state. Given the continual inflow of raw sewage into the lagoon, the potential movement of the scum can deform the floating cover. One of the challenges pertaining to the structural health assessment of the floating cover hinges upon the difficulty in monitoring the development and geometrical profile of scum underneath the cover. The current measurement of scum requires the inspector to physically access the scum either from multiple discrete access ports within the floating cover or by using highly-skilled divers in the lagoon. In collaboration with Melbourne Water, a non-contact UAV-aided photogrammetry technique has been deployed to quantify the development of scum underneath the cover. It is shown that the digital elevation model obtained from photogrammetry correlates well with direct laser based measurements of elevation, and that cluster analysis can be used in conjunction with the digital elevation model to estimate the qualitative hardness level of the scum beneath the cover, thereby providing a viable alternative to time-consuming walk the cover type inspections. It is also shown that the total scum depth as predicted from the digital elevation model correlates well with the measurements taken through the access ports. This method could be a more effective alternative to current practice.

2018 ◽  
Vol 12 (5-6) ◽  
pp. 50-57 ◽  
Author(s):  
I. S. Voskresensky ◽  
A. A. Suchilin ◽  
L. A. Ushakova ◽  
V. M. Shaforostov ◽  
A. L. Entin ◽  
...  

To use unmanned aerial vehicles (UAVs) for obtaining digital elevation models (DEM) and digital terrain models (DTM) is currently actively practiced in scientific and practical purposes. This technology has many advantages: efficiency, ease of use, and the possibility of application on relatively small area. This allows us to perform qualitative and quantitative studies of the progress of dangerous relief-forming processes and to assess their consequences quickly. In this paper, we describe the process of obtaining a digital elevation model (DEM) of the relief of the slope located on the bank of the Protva River (Satino training site of the Faculty of Geography, Lomonosov Moscow State University). To obtain the digital elevation model, we created a temporary geodetic network. The coordinates of the points were measured by the satellite positioning method using a highprecision mobile complex. The aerial survey was carried out using an unmanned aerial vehicle from a low altitude (about 40–45 m). The processing of survey materials was performed via automatic photogrammetry (Structure-from-Motion method), and the digital elevation model of the landslide surface on the Protva River valley section was created. Remote sensing was supplemented by studying archival materials of aerial photography, as well as field survey conducted immediately after the landslide. The total amount of research results made it possible to establish the causes and character of the landslide process on the study site. According to the geomorphological conditions of formation, the landslide refers to a variety of landslideslides, which are formed when water is saturated with loose deposits. The landslide body was formed with the "collapse" of the blocks of turf and deluvial loams and their "destruction" as they shifted and accumulated at the foot of the slope.


Sign in / Sign up

Export Citation Format

Share Document