model analysis
Recently Published Documents





2022 ◽  
Vol 276 ◽  
pp. 108394
Yubin Yang ◽  
Lloyd T. Wilson ◽  
Tao Li ◽  
Livia Paleari ◽  
Roberto Confalonieri ◽  

2022 ◽  
pp. 199-215
Chrystalleni Aristidou ◽  
Kevin Lee ◽  
Kalvinder Shields

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262584
Hannah M. Kinsella ◽  
Laura D. Hostnik ◽  
Hailey A. Snyder ◽  
Sarah E. Mazur ◽  
Ahmed M. Kamr ◽  

The equine neonate is considered to have impaired glucose tolerance due to delayed maturation of the pancreatic endocrine system. Few studies have investigated insulin sensitivity in newborn foals using dynamic testing methods. The objective of this study was to assess insulin sensitivity by comparing the insulin-modified frequently sampled intravenous glucose tolerance test (I-FSIGTT) between neonatal foals and adult horses. This study was performed on healthy neonatal foals (n = 12), 24 to 60 hours of age, and horses (n = 8), 3 to 14 years of age using dextrose (300 mg/kg IV) and insulin (0.02 IU/kg IV). Insulin sensitivity (SI), acute insulin response to glucose (AIRg), glucose effectiveness (Sg), and disposition index (DI) were calculated using minimal model analysis. Proxy measurements were calculated using fasting insulin and glucose concentrations. Nonparametric statistical methods were used for analysis and reported as median and interquartile range (IQR). SI was significantly higher in foals (18.3 L·min-1· μIU-1 [13.4–28.4]) compared to horses (0.9 L·min-1· μIU-1 [0.5–1.1]); (p < 0.0001). DI was higher in foals (12 × 103 [8 × 103−14 × 103]) compared to horses (4 × 102 [2 × 102−7 × 102]); (p < 0.0001). AIRg and Sg were not different between foals and horses. The modified insulin to glucose ratio (MIRG) was lower in foals (1.72 μIUinsulin2/10·L·mgglucose [1.43–2.68]) compared to horses (3.91 μIU insulin2/10·L·mgglucose [2.57–7.89]); (p = 0.009). The homeostasis model assessment of beta cell function (HOMA-BC%) was higher in horses (78.4% [43–116]) compared to foals (23.2% [17.8–42.2]); (p = 0.0096). Our results suggest that healthy neonatal foals are insulin sensitive in the first days of life, which contradicts current literature regarding the equine neonate. Newborn foals may be more insulin sensitive immediately after birth as an evolutionary adaptation to conserve energy during the transition to extrauterine life.

Miguel García-Grimshaw ◽  
Amanda Chirino-Pérez ◽  
Fernando Daniel Flores-Silva ◽  
Sergio Iván Valdés-Ferrer ◽  
María de los Ángeles Vargas-Martínez ◽  

2022 ◽  
Vol 23 (1) ◽  
Ebru Hazar Bodrumlu ◽  
Fethiye Çakmak Özlü ◽  
Hakan Yılmaz ◽  
Levent Demiriz

Abstract Background Bruxism is defined as repetitive jaw-muscle activity characterized by the grinding and clenching of teeth. The prevalence of bruxism in children is extensive, and it can cause irregularities in dental arches. The study aimed to investigate the presence of any effects of bruxism on maxillary arch length and width in children using three-dimensional (3D) digital model analysis. Method This study evaluated 30 children with bruxism. For every child with bruxism, a case control without bruxism was selected and matched for gender, age, and dentition. Digital models of the patients’ maxilla were obtained with a 3D intraoral scanner, and width and length measurements between the reference points on the maxilla were obtained on the digital models. Results The mean age of the study group was 9.13 ± 1.27. Insıgnificance differences were found between females and males within and between groups in terms of maxillary width and length. Insignificant difference was found between the control and study groups when the lengths of 3R-3L, 4R-4L, 5R-5L, 6R-6L, and IP-M were compared (p > 0.05). Conclusion Based on the study results, there were no differences in the maxillary arch length and width in patients with bruxism and patients without bruxism.

Sign in / Sign up

Export Citation Format

Share Document