Representability in second-order propositional poly-modal logic

2002 ◽  
Vol 67 (3) ◽  
pp. 1039-1054 ◽  
Author(s):  
G. Aldo Antonelli ◽  
Richmond H. Thomason

AbstractA propositional system of modal logic is second-order if it contains quantifiers ∀p and ∃p which, in the standard interpretation, are construed as ranging over sets of possible worlds (propositions). Most second-order systems of modal logic are highly intractable; for instance, when augmented with propositional quantifiers, K, B, T, K4 and S4 all become effectively equivalent to full second-order logic. An exception is S5, which, being interpretable in monadic second-order logic, is decidable.In this paper we generalize this framework by allowing multiple modalities. While this does not affect the undecidability of K, B, T, K4 and S4, poly-modal second-order S5 is dramatically more expressive than its mono-modal counterpart. As an example, we establish the definability of the transitive closure of finitely many modal operators. We also take up the decidability issue, and, using a novel encoding of sets of unordered pairs by partitions of the leaves of certain graphs, we show that the second-order propositional logic of two S5 modalitities is also equivalent to full second-order logic.

2017 ◽  
Vol 52 (1) ◽  
pp. 232-245
Author(s):  
Loris D'Antoni ◽  
Margus Veanes

2019 ◽  
Vol 342 (1) ◽  
pp. 152-167
Author(s):  
Alexander E. Holroyd ◽  
Avi Levy ◽  
Moumanti Podder ◽  
Joel Spencer

Sign in / Sign up

Export Citation Format

Share Document