scholarly journals Displacement-based seismic design of RC wall-frame buildings and asymmetric plan buildings

Author(s):  
Farrokh Fazileh
2019 ◽  
Vol 9 (6) ◽  
pp. 1095
Author(s):  
Beka Abebe ◽  
Jong Lee

Direct displacement-based design (DDBD) is currently a widely used displacement-based seismic design method. DDBD accounts for the torsional response of reinforced concrete (RC) frame buildings by using semi-empirical equations formulated for wall-type buildings. Higher-mode responses are incorporated by using equations obtained from only a few parametric studies of regular planar frames. In this paper, there is an attempt to eliminate torsional responses by proportioning frames’ secant stiffnesses so that the centers of rigidity and supported mass (the mass on and above each story) coincide. Once the torsional rotations are significantly reduced and only translational motions are achieved, higher-mode responses are included using a technique developed by the authors in their recent paper. The efficiency of the proposed design procedure in fulfilling the intended performance objective is checked by two plan-asymmetric 20-story RC frame building cases. Case-I has the same-plan configuration while Case-II has a different-plan configuration along the height. Both cases have different bay widths in orthogonal directions. Verification of the case studies by nonlinear time history analysis (NTHA) has shown that the proposed method results in designs that satisfy the performance objective with reasonable accuracy without redesigning members. It is believed that a step forward is undertaken toward rendering design verification by NTHA less necessary, thereby saving computational resources and effort.


Author(s):  
G. Michele Calvi ◽  
Daniel P. Abrams ◽  
Hugo Bachmann ◽  
Shaoliang Bai ◽  
Patricio Bonelli ◽  
...  

2003 ◽  
pp. 201-212
Author(s):  
Kiyoshi HIRAO ◽  
Yukinori SAKAGAMI ◽  
Yoshifumi NARIYUKI ◽  
Tsutomu SAWADA

Sign in / Sign up

Export Citation Format

Share Document