scholarly journals Global asymptotic stability of the fractional differential equations

Author(s):  
Ndolane Sene
2019 ◽  
Vol 38 (6) ◽  
pp. 159-171 ◽  
Author(s):  
Vahid Mohammadnezhad ◽  
Mostafa Eslami ◽  
Hadi Rezazadeh

In this paper, we first study stability analysis of linear conformable fractional differential equations system with time delays. Some sufficient conditions on the asymptotic stability for these systems are proposed by using properties of the fractional Laplace transform and fractional version of final value theorem. Then, we employ conformable Euler’s method to solve conformable fractional differential equations system with time delays to illustrate the effectiveness of our theoretical results


Author(s):  
Abdelouaheb Ardjouni ◽  
Hamid Boulares ◽  
Yamina Laskri

We give sufficient conditions to guarantee the asymptotic stability of the zero solution to a kind of higher-order nonlinear fractional differential equations. By using Krasnoselskii's xed point theorem in a weighted Banach space, we establish new results on the asymptotic stability of the zero solution provided that f (t, 0) = 0. The results obtained here generalize the work of Ge and Kou.


2012 ◽  
Vol 9 (1) ◽  
pp. 59-64
Author(s):  
R.K. Gazizov ◽  
A.A. Kasatkin ◽  
S.Yu. Lukashchuk

In the paper some features of applying Lie group analysis methods to fractional differential equations are considered. The problem related to point change of variables in the fractional differentiation operator is discussed and some general form of transformation that conserves the form of Riemann-Liouville fractional operator is obtained. The prolongation formula for extending an infinitesimal operator of a group to fractional derivative with respect to arbitrary function is presented. Provided simple example illustrates the necessity of considering both local and non-local symmetries for fractional differential equations in particular cases including the initial conditions. The equivalence transformation forms for some fractional differential equations are discussed and results of group classification of the wave-diffusion equation are presented. Some examples of constructing particular exact solutions of fractional transport equation are given, based on the Lie group methods and the method of invariant subspaces.


Sign in / Sign up

Export Citation Format

Share Document