scholarly journals Soil physicochemical properties drive the variation in soil microbial communities along a forest successional series in a degraded wetland in northeastern China

Authorea ◽  
2020 ◽  
Author(s):  
Xin Sui ◽  
Rong Zhang ◽  
Beat Frey ◽  
Nan Xu ◽  
Hongwei Ni ◽  
...  
2020 ◽  
Author(s):  
Haiying Lei ◽  
Ake Liu ◽  
Qinwen Hou ◽  
Qingsong Zhao ◽  
Jia Guo ◽  
...  

Abstract Background: Continuous monocropping can affect the physicochemical and biological characteristics of cultivated soil. Sophora flavescens is a valuable herbal medicine and sensitive to continuous monocropping. Currently, diversity patterns of soil microbial communities in soil continuous monocropping with S. flavescens have not been extensively elucidated.Results: In this study, comparative 16S rDNA and internal transcribed spacer (ITS) MiSeq sequencing analyses were used to examine the taxonomic community structure and microbial diversity in nonrhizosphere soil (CK) and rhizosphere soils (SCC, TCC, and FCC) sampled from fields that had undergone two, three, and five years of continuous monocropping, respectively. Among the microbial communities, a decreased abundance of Acidobacteria and increased abundances of Proteobacteria and Bacteroidetes were found with the increase in monocropping years of S. flavescens. As the continuous monocropping time increased, the diversity of the bacterial community decreased, but that of fungi increased. Redundancy analysis also showed that among the properties of the rhizosphere soil, the available phosphorus, organic matter, total nitrogen, and sucrase had the greatest impacts on the diversity of the rhizosphere microbial community. Moreover, a biomarker for S. flavescens soil was also identified using the most differentially abundant bacteria and fungi in soil samples.Conclusions: Our study indicates that long-term monocropping exerted great impacts on microbial community distributions and soil physicochemical properties. The relationship between microbial community and physicochemical properties of rhizosphere soil would help clarify the side effects of continuous S. flavescens monocropping. Our study may aid in uncovering the theoretical basis underlying obstacles to continuous monocropping and provide better guidance for crop production.


2019 ◽  
Author(s):  
Haoan Luan ◽  
Wei Gao ◽  
Shaowen Huang ◽  
Jiwei Tang ◽  
Mingyue Li ◽  
...  

ABSTRACTSoil microbial community and enzyme activities together affect various ecosystem functions of soils. Fertilization, as important agricultural management practices, are known to modify soil microbial characteristics; however, inconsistent results have been reported. The aim of this research therefore was to make a comparative study of the effects of different fertilization patterns (No N inputs (No N), 100% chemical fertilizer-N (CN) inputs (4/4CN) and different substitution rates of CN by organic manure-N (MN) (3/4CN+1/4MN, 2/4CN+2/4MN and 1/4CN+3/4MN)) on soil physicochemical properties, enzyme activities and microbial attributes in a GVP of Tianjin, China. Manure substitution of chemical fertilizer, especially at higher substitution rate (2/4CN+2/4MN and 1/4CN+3/4MN), improved soil physicochemical properties (higher soil organic C (SOC) and nutrient contents; lower bulk densities), promoted microbial growth (higher total phospholipid fatty acids and microbial biomass C contents) and activity (higher soil hydrolase activities). Manure addition caused a remarkable increase of the fungi/bacteria ratio and a distinct shift in the fungal (bacterial) community to greater abundance of arbuscular mycorrhizal fungi (G+ bacteria) compared with saprotrophic fungi (G− bacteria). These changes drove shifts toward fungal-dominated soil microbial communities and then optimized microbial community structure. Also, manure application increased soil biodiversity (microbial community and enzyme function), indicated by increased Shannon–Wiener diversity. Redundancy analysis indicated that the most possible mechanism of the impacts of different fertilization patterns on soil microbial characteristics may be the mediation of SOC and nutrient (N) availability (especially SOC) in this GVP of China. In conclusion, manure substitution of chemical fertilizer, especially at higher substitution rate, was more efficient for improving soil quality and biological functions.


2020 ◽  
Author(s):  
Haiying Lei ◽  
Ake Liu ◽  
Qingsong Zhao ◽  
Qinwen Hou ◽  
Jia Guo ◽  
...  

Abstract Background: Continuous monocropping can affect the physicochemical and biological characteristics of cultivated soil. Sophora flavescens is a valuable herbal medicine and sensitive to continuous monocropping. Currently, diversity patterns of soil microbial communities in soil continuous monocropping with S. flavescens have not been extensively elucidated. Results: In this study, comparative 16S rDNA and internal transcribed spacer (ITS) MiSeq sequencing analyses were used to examine the taxonomic community structure and microbial diversity in nonrhizosphere soil (CK) and rhizosphere soils (SCC, TCC, and FCC) sampled from fields that had undergone two, three, and five years of continuous monocropping, respectively. Among the microbial communities, a decreased abundance of Acidobacteria and increased abundances of Proteobacteria and Bacteroidetes were found with the increase in monocropping years of S. flavescens . As the continuous monocropping time increased, the diversity of the bacterial community decreased, but that of fungi increased. Redundancy analysis also showed that among the properties of the rhizosphere soil, the available phosphorus, organic matter, total nitrogen, and sucrase had the greatest impacts on the diversity of the rhizosphere microbial community. Moreover, a biomarker for S. flavescens soil was also identified using the most differentially abundant bacteria and fungi in soil samples. Conclusions: Our study indicates that long-term monocropping exerted great impacts on microbial community distributions and soil physicochemical properties. The relationship between microbial community and physicochemical properties of rhizosphere soil would help clarify the side effects of continuous S. flavescens monocropping. Our study may aid in uncovering the theoretical basis underlying obstacles to continuous monocropping and provide better guidance for crop production.


2018 ◽  
Vol 38 (10) ◽  
Author(s):  
孙海 SUN Hai ◽  
王秋霞 WANG Qiuxia ◽  
张春阁 ZHANG Chunge ◽  
李乐 LI Le ◽  
刘政波 LIU Zhengbo ◽  
...  

Author(s):  
Zhe Liu ◽  
Meixia Gu ◽  
Wei Zhu ◽  
Mengru Zhang ◽  
Weizhi Zhou

Soil oil-pollution is one of the most severe environmental issues at present. Shifts of soil metallome and microbiome are essential indicators for risk assessment and remediation of field soil pollutions, but not well studied undergoing the petroleum contamination. In this research, soil samples were collected from a short-term and long-term petroleum-contaminated oil field. The soil physicochemical properties, metallome, microbial community, and polluted and unpolluted soil network were testified. Results showed that the contents of soil total petroleum hydrocarbon, total carbon, total nitrogen, total sulfur, total phosphorus, calcium, copper, manganese, lead, and zinc were increased by petroleum contamination. In contrast, the soil pH was decreased by petroleum contamination regardless of the pollution duration. Petroleum-contamination also reduced bacterial and fungal α-diversity indices. In contrast, bacterial α-diversity was negatively correlated with soil TPH and EC, and fungal α-diversity was negatively correlated with soil EC. Moreover, the relative abundances of Proteobacteria, Ascomycota, Oleibacter, and Fusarium in soil were increased by petroleum contamination. Network analysis showed that number of links, modules and the network invulnerability decreased in PS, followed by the OS group. These results demonstrate that short-term heavy petroleum contamination can cause shifts in soil physicochemical properties, metallome, and microbiome and assemble a less complex and vulnerable soil microbial network. Moreover, natural restoration can hardly amend soil properties and microbial network structure. This research emphasizes that the uncommonly studied soil metallome may play a vital part in the reaction of soil microbial communities to petroleum-contamination and potential application value of synthetic community in bioremediation.


2021 ◽  
Author(s):  
Hongyu Feng ◽  
Yajun Qiao ◽  
Lu Xia ◽  
Wen Yang ◽  
Yongqiang Zhao ◽  
...  

Abstract Aims: Although the influence of coastal embankments on soil physicochemical properties and carbon (C) and nitrogen (N) cycling has been widely studied, the mechanisms of their effects on the soil microbial ecology are still poorly understood. Thus, the aim of this study was to investigate variations in soil bacterial and archaeal communities between natural and embanked saltmarshes, as well as the determinants that drive these variations.Methods: 16S rRNA gene sequence analysis was performed to assess the impacts of embankments on the bacterial and archaeal communities of the invasive Spartina alterniflora Loisel., as well as native Suaeda salsa (L.) Pall. and Phragmites australis (Cav.) Trin. ex Steud. saltmarshes in the coastal China.Results: Embankments significantly decreased the Simpson diversity index of the S. alterniflora saltmarsh, while increasing the OTU richness in the P. australis saltmarsh. Additionally, the bacterial and archaeal community compositions in the embanked S. alterniflora and P. australis saltmarshes were considerably modified. However, no variations were found between the bacterial and archaeal communities of the natural and embanked S. salsa saltmarshes.Conclusions: These results were possibly because embankments decreased the soil nutrient substrates (e.g., soil organic C and N) dramatically in the S. alterniflora saltmarsh, while increased soil nutrient substrates significantly in the P. australis saltmarsh. However, embankments had a negligible effect on the soil nutrient substrates in the S. salsa saltmarsh. Moreover, embankments increased the abundance of Betaproteobacteria, and decreased the abundance of sulfur- and sodium-dependent bacteria due to the dramatic change in soil physicochemical properties.


Sign in / Sign up

Export Citation Format

Share Document