enzyme activities
Recently Published Documents


TOTAL DOCUMENTS

8714
(FIVE YEARS 1114)

H-INDEX

134
(FIVE YEARS 16)

2022 ◽  
Vol 172 ◽  
pp. 104364
Author(s):  
Emmanuel Amoakwah ◽  
Emmanuel Arthur ◽  
Kwame A. Frimpong ◽  
Nicola Lorenz ◽  
Mohammad Arifur Rahman ◽  
...  

2022 ◽  
Vol 217 ◽  
pp. 105272
Author(s):  
Geeta Singh ◽  
Ranjan Bhattacharyya ◽  
Bhagwan Singh Dhaked ◽  
T.K. Das

2023 ◽  
Vol 83 ◽  
Author(s):  
S. Abbas ◽  
Asia Iqbal ◽  
K. M. Anjum ◽  
S. Sherzada ◽  
U. Atique ◽  
...  

Abstract We have evaluated the effects of different fish feeds on the body composition, growth, and enzyme activities of Labeo rohita (Rohu). In total, 240 fishes between the average weights of 24.77±2.15g were studied. The treatments were applied in a completely randomized design, with 4 treatments of 60 fishes each. Treatments consisted of four different fish feeds [Oryza (T1), AMG (T2), Aqua (T3), and Supreme (T4)]. Body composition, growth performance, and enzyme activities were evaluated. There was a significant variation in performance of fishes fed with different type of feed; as fishes having Oryza feed showed the highest weight gain, specific growth rate (SGR), and best feed conversion ratio (FCR) as compared to other groups that were considered to be significant (P ≤ 0.05). High net weight gain was obtained in T4 when compared with T2 and T3. FCR value of T4 was less than T1 but higher than T2, T3 and T2, which showed the lowest values. The specific growth rate was recorded as average in T4, but T2 led a high SGR than T3. Similarly, crude protein level and digestive enzymes activity was recorded significantly highest in fed with Oryza (T1) as compared to AMG (T2), Aqua (T3), and Supreme (T4). Water quality parameters were recorded significant in all treatments except pH and DO of treatment (T1), significantly different from other treatments. It was concluded that Rohu (Labeo rohita) could show a promising growth rate and protease enzyme activity when fed with the Oryza feed of 25% protein.


2022 ◽  
Vol 170 ◽  
pp. 104292
Author(s):  
Yuxuan Chen ◽  
Tianxing Wei ◽  
Guoliang Sha ◽  
Qingke Zhu ◽  
Zhao Liu ◽  
...  

Geoderma ◽  
2022 ◽  
Vol 407 ◽  
pp. 115536
Author(s):  
José Luis Moreno ◽  
Felipe Bastida ◽  
Marta Díaz-López ◽  
Yunkai Li ◽  
Yunpeg Zhou ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Chengjiao Duan ◽  
Yuxia Mei ◽  
Qiang Wang ◽  
Yuhan Wang ◽  
Qi Li ◽  
...  

Some studies have reported the importance of rhizobium in mitigating heavy metal toxicity, however, the regulatory mechanism of the alfalfa-rhizobium symbiosis to resist copper (Cu) stress in the plant-soil system through biochemical reactions is still unclear. This study assessed the effects of rhizobium (Sinorhizobium meliloti CCNWSX0020) inoculation on the growth of alfalfa and soil microbial characteristics under Cu-stress. Further, we determined the regulatory mechanism of rhizobium inoculation to alleviate Cu-stress in alfalfa through plant-soil system. The results showed that rhizobium inoculation markedly alleviated Cu-induced growth inhibition in alfalfa by increasing the chlorophyll content, height, and biomass, in addition to nitrogen and phosphorus contents. Furthermore, rhizobium application alleviated Cu-induced phytotoxicity by increasing the antioxidant enzyme activities and soluble protein content in tissues, and inhibiting the lipid peroxidation levels (i.e., malondialdehyde content). In addition, rhizobium inoculation improved soil nutrient cycling, which increased soil enzyme activities (i.e., β-glucosidase activity and alkaline phosphatase) and microbial biomass nitrogen. Both Pearson correlation coefficient analysis and partial least squares path modeling (PLS-PM) identified that the interactions between soil nutrient content, enzyme activity, microbial biomass, plant antioxidant enzymes, and oxidative damage could jointly regulate plant growth. This study provides comprehensive insights into the mechanism of action of the legume-rhizobium symbiotic system to mitigate Cu stress and provide an efficient strategy for phytoremediation of Cu-contaminated soils.


2022 ◽  
Vol 10 (1) ◽  
pp. 158
Author(s):  
Jinan Cheng ◽  
Hui Jin ◽  
Jinlin Zhang ◽  
Zhongxiang Xu ◽  
Xiaoyan Yang ◽  
...  

Allelochemicals released from the root of Stellera chamaejasme L. into rhizosphere soil are an important factor for its invasion of natural grasslands. The aim of this study is to explore the interactions among allelochemicals, soil physicochemical properties, soil enzyme activities, and the rhizosphere soil microbial communities of S. chamaejasme along a growth-coverage gradient. High-throughput sequencing was used to determine the microbial composition of the rhizosphere soil sample, and high-performance liquid chromatography was used to detect allelopathic substances. The main fungal phyla in the rhizosphere soil with a growth coverage of 0% was Basidiomycetes, and the other sample plots were Ascomycetes. Proteobacteria and Acidobacteria were the dominant bacterial phyla in all sites. RDA analysis showed that neochamaejasmin B, chamaechromone, and dihydrodaphnetin B were positively correlated with Ascomycota and Glomeromycota and negatively correlated with Basidiomycota. Neochamaejasmin B and chamaechromone were positively correlated with Proteobacteria and Actinobacteria and negatively correlated with Acidobacteria and Planctomycetes. Allelochemicals, soil physicochemical properties, and enzyme activity affected the composition and diversity of the rhizosphere soil microbial community to some extent. When the growth coverage of S. chamaejasme reached the primary stage, it had the greatest impact on soil physicochemical properties and enzyme activities.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yang Li ◽  
Wenjing Li ◽  
Lei Ji ◽  
Fanyong Song ◽  
Tianyuan Li ◽  
...  

The biodegradation of organic pollutants is the main pathway for the natural dissipation and anthropogenic remediation of polycyclic aromatic hydrocarbons (PAHs) in the environment. However, in the saline soils, the PAH biodegradation could be influenced by soil salts through altering the structures of microbial communities and physiological metabolism of degradation bacteria. In the worldwide, soils from oilfields are commonly threated by both soil salinity and PAH contamination, while the influence mechanism of soil salinity on PAH biodegradation were still unclear, especially the shifts of degradation genes and soil enzyme activities. In order to explain the responses of soils and bacterial communities, analysis was conducted including soil properties, structures of bacterial community, PAH degradation genes and soil enzyme activities during a biodegradation process of PAHs in oilfield soils. The results showed that, though low soil salinity (1% NaCl, w/w) could slightly increase PAH degradation rate, the biodegradation in high salt condition (3% NaCl, w/w) were restrained significantly. The higher the soil salinity, the lower the bacterial community diversity, copy number of degradation gene and soil enzyme activity, which could be the reason for reductions of degradation rates in saline soils. Analysis of bacterial community structure showed that, the additions of NaCl increase the abundance of salt-tolerant and halophilic genera, especially in high salt treatments where the halophilic genera dominant, such as Acinetobacter and Halomonas. Picrust2 and redundancy analysis (RDA) both revealed suppression of PAH degradation genes by soil salts, which meant the decrease of degradation microbes and should be the primary cause of reduction of PAH removal. The soil enzyme activities could be indicators for microorganisms when they are facing adverse environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document