scholarly journals Global existence and decay estimate of solution to compressible quantum Navier-Stokes equations with damping

Author(s):  
Zhonger Wu ◽  
Zhong Tan ◽  
Xu TANG

In this paper, we consider the Cauchy problem of the compressible quantum Navier-Stokes equations with damping in R3. We first assume that the H3-norm of the initial data is sufficiently small while the higher derivative can be arbitrarily large, and prove the global existence of smooth solutions. Then the decay estimate of the solution is derived for the initial data in a homogeneous Sobolev space or Besov space with negative exponent. In addition, the usual Lp−L2(1 ≤ p ≤ 2) type decay rate is obtained without assuming that the Lpnorm of the initial data is sufficiently small.

2010 ◽  
Vol 88 (2) ◽  
pp. 239-246 ◽  
Author(s):  
ZHONG TAN ◽  
YANJIN WANG

AbstractWe give a simpler and refined proof of some blow-up results of smooth solutions to the Cauchy problem for the Navier–Stokes equations of compressible, viscous and heat-conducting fluids in arbitrary space dimensions. Our main results reveal that smooth solutions with compactly supported initial density will blow up in finite time, and that if the initial density decays at infinity in space, then there is no global solution for which the velocity decays as the reciprocal of the elapsed time.


2017 ◽  
Vol 35 (2) ◽  
pp. 127 ◽  
Author(s):  
Paulo R. Zingano ◽  
Jens Lorenz

In this paper we consider the Cauchy problem for the 3D navier-Stokes equations for incompressible flows. The initial data are assume d to be smooth and rapidly decaying at infinity. A famous open problem is whether classical solution can develop singularities in finite time. Assuming the maximal interval of existence to be finite, we give a unified discussion of various known solution properties as time approaches the blow-up time.


2018 ◽  
Vol 23 (2) ◽  
pp. 262-286
Author(s):  
Bin Han ◽  
Yukang Chen

In [5], Chemin, Gallagher and Paicu proved the global regularity of solutions to the classical Navier-Stokes equations with a class of large initial data on T2 × R. This data varies slowly in vertical variable and has a norm which blows up as the small parameter ( represented by ǫ in the paper) tends to zero. However, to the best of our knowledge, the result is still unclear for the whole spaces R3. In this paper, we consider the generalized Navier-Stokes equations on Rn(n ≥ 3): ∂tu + u · ∇u + Dsu + ∇P = 0, div u = 0. For some suitable number s, we prove that the Cauchy problem with initial data of the form u0ǫ(x) = (v0h(xǫ), ǫ−1v0n(xǫ))T , xǫ = (xh, ǫxn)T , is globally well-posed for all small ǫ > 0, provided that the initial velocity profile v0 is analytic in xn and certain norm of v0 is sufficiently small but independent of ǫ. In particular, our result is true for the n-dimensional classical Navier-Stokes equations with n ≥ 4 and the fractional Navier-Stokes equations with 1 ≤ s < 2 in 3D.


Sign in / Sign up

Export Citation Format

Share Document