scholarly journals Upper bounds for the signless Laplacian spectral radius of graphs on surfaces

Filomat ◽  
2016 ◽  
Vol 30 (13) ◽  
pp. 3473-3481
Author(s):  
Xiaodan Chen ◽  
Yaoping Hou

In this paper, we present some new upper bounds for the signless Laplacian spectral radius of graphs embeddable on a fixed surface, which improve several previously known results. We also give several improved upper bounds for the signless Laplacian spectral radius of outerplanar graphs and Halin graphs.

2015 ◽  
Vol 9 (2) ◽  
pp. 332-346 ◽  
Author(s):  
Guihai Yu ◽  
Lihua Feng ◽  
Aleksandar Ilic ◽  
Dragan Stevanovic

Let G be an n-vertex (n ? 3) simple graph embeddable on a surface of Euler genus (the number of crosscaps plus twice the number of handles). In this paper, we present upper bounds for the signless Laplacian spectral radius of planar graphs, outerplanar graphs and Halin graphs, respectively, in terms of order and maximum degree. We also demonstrate that our bounds are sometimes better than known ones. For outerplanar graphs without internal triangles, we determine the extremal graphs with the maximum and minimum signless Laplacian spectral radii.


2011 ◽  
Vol 03 (02) ◽  
pp. 185-191 ◽  
Author(s):  
YA-HONG CHEN ◽  
RONG-YING PAN ◽  
XIAO-DONG ZHANG

The signless Laplacian matrix of a graph is the sum of its degree diagonal and adjacency matrices. In this paper, we present a sharp upper bound for the spectral radius of the adjacency matrix of a graph. Then this result and other known results are used to obtain two new sharp upper bounds for the signless Laplacian spectral radius. Moreover, the extremal graphs which attain an upper bound are characterized.


Author(s):  
Subarsha Banerjee ◽  
Avishek Adhikari

Let [Formula: see text] denote the power graph of a finite group [Formula: see text]. Let [Formula: see text] denote the Signless Laplacian spectral radius of [Formula: see text]. In this paper, we give lower and upper bounds on [Formula: see text] for any [Formula: see text] and find those graphs for which the extremal values are attained. We give a comparison between the bounds obtained and exact value of [Formula: see text] for any [Formula: see text]. We then find the eigenvalues of [Formula: see text] and give lower and upper bounds on the spectral radius of [Formula: see text]. When [Formula: see text] and [Formula: see text] where [Formula: see text] are primes and [Formula: see text] is a positive integer, we obtain sharper bounds on [Formula: see text]. Finally, we make a conjecture on [Formula: see text] for any [Formula: see text].


2017 ◽  
Vol 32 ◽  
pp. 447-453
Author(s):  
Qi Kong ◽  
Ligong Wang

In this paper, we prove two results about the signless Laplacian spectral radius $q(G)$ of a graph $G$ of order $n$ with maximum degree $\Delta$. Let $B_{n}=K_{2}+\overline{K_{n}}$ denote a book, i.e., the graph $B_{n}$ consists of $n$ triangles sharing an edge. The results are the following: (1) Let $1< k\leq l< \Delta < n$ and $G$ be a connected \{$B_{k+1},K_{2,l+1}$\}-free graph of order $n$ with maximum degree $\Delta$. Then $$\displaystyle q(G)\leq \frac{1}{4}[3\Delta+k-2l+1+\sqrt{(3\Delta+k-2l+1)^{2}+16l(\Delta+n-1)}$$ with equality if and only if $G$ is a strongly regular graph with parameters ($\Delta$, $k$, $l$). (2) Let $s\geq t\geq 3$, and let $G$ be a connected $K_{s,t}$-free graph of order $n$ $(n\geq s+t)$. Then $$q(G)\leq n+(s-t+1)^{1/t}n^{1-1/t}+(t-1)(n-1)^{1-3/t}+t-3.$$


2019 ◽  
Vol 35 (1) ◽  
pp. 31-40 ◽  
Author(s):  
BILAL A. CHAT ◽  
◽  
HILAL A. GANIE ◽  
S. PIRZADA ◽  
◽  
...  

We consider the skew Laplacian matrix of a digraph −→G obtained by giving an arbitrary direction to the edges of a graph G having n vertices and m edges. We obtain an upper bound for the skew Laplacian spectral radius in terms of the adjacency and the signless Laplacian spectral radius of the underlying graph G. We also obtain upper bounds for the skew Laplacian spectral radius and skew spectral radius, in terms of various parameters associated with the structure of the digraph −→G and characterize the extremal graphs.


2014 ◽  
Vol 06 (02) ◽  
pp. 1450029 ◽  
Author(s):  
YU-PEI HUANG ◽  
CHIH-WEN WENG

In a simple connected graph, the average 2-degree of a vertex is the average degree of its neighbors. With the average 2-degree sequence and the maximum degree ratio of adjacent vertices, we present a sharp upper bound of the spectral radius of the adjacency matrix of a graph, which improves a result in [Y. H. Chen, R. Y. Pan and X. D. Zhang, Two sharp upper bounds for the signless Laplacian spectral radius of graphs, Discrete Math. Algorithms Appl.3(2) (2011) 185–191].


2013 ◽  
Vol 61 (5) ◽  
pp. 573-581 ◽  
Author(s):  
Lihua Feng ◽  
Guihai Yu ◽  
Aleksandar Ilić ◽  
Dragan Stevanović

Sign in / Sign up

Export Citation Format

Share Document