TWO SHARP UPPER BOUNDS FOR THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS

2011 ◽  
Vol 03 (02) ◽  
pp. 185-191 ◽  
Author(s):  
YA-HONG CHEN ◽  
RONG-YING PAN ◽  
XIAO-DONG ZHANG

The signless Laplacian matrix of a graph is the sum of its degree diagonal and adjacency matrices. In this paper, we present a sharp upper bound for the spectral radius of the adjacency matrix of a graph. Then this result and other known results are used to obtain two new sharp upper bounds for the signless Laplacian spectral radius. Moreover, the extremal graphs which attain an upper bound are characterized.

2019 ◽  
Vol 35 (1) ◽  
pp. 31-40 ◽  
Author(s):  
BILAL A. CHAT ◽  
◽  
HILAL A. GANIE ◽  
S. PIRZADA ◽  
◽  
...  

We consider the skew Laplacian matrix of a digraph −→G obtained by giving an arbitrary direction to the edges of a graph G having n vertices and m edges. We obtain an upper bound for the skew Laplacian spectral radius in terms of the adjacency and the signless Laplacian spectral radius of the underlying graph G. We also obtain upper bounds for the skew Laplacian spectral radius and skew spectral radius, in terms of various parameters associated with the structure of the digraph −→G and characterize the extremal graphs.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 792
Author(s):  
Luis Medina ◽  
Hans Nina ◽  
Macarena Trigo

In this article, we find sharp lower bounds for the spectral radius of the distance signless Laplacian matrix of a simple undirected connected graph and we apply these results to obtain sharp upper bounds for the distance signless Laplacian energy graph. The graphs for which those bounds are attained are characterized.


2018 ◽  
Vol 34 ◽  
pp. 191-204 ◽  
Author(s):  
Fouzul Atik ◽  
Pratima Panigrahi

The \emph{distance matrix} of a simple connected graph $G$ is $D(G)=(d_{ij})$, where $d_{ij}$ is the distance between the $i$th and $j$th vertices of $G$. The \emph{distance signless Laplacian matrix} of the graph $G$ is $D_Q(G)=D(G)+Tr(G)$, where $Tr(G)$ is a diagonal matrix whose $i$th diagonal entry is the transmission of the vertex $i$ in $G$. In this paper, first, upper and lower bounds for the spectral radius of a nonnegative matrix are constructed. Applying this result, upper and lower bounds for the distance and distance signless Laplacian spectral radius of graphs are given, and the extremal graphs for these bounds are obtained. Also, upper bounds for the modulus of all distance (respectively, distance signless Laplacian) eigenvalues other than the distance (respectively, distance signless Laplacian) spectral radius of graphs are given. These bounds are probably first of their kind as the authors do not find in the literature any bound for these eigenvalues. Finally, for some classes of graphs, it is shown that all distance (respectively, distance signless Laplacian) eigenvalues other than the distance (respectively, distance signless Laplacian) spectral radius lie in the smallest Ger\^sgorin disc of the distance (respectively, distance signless Laplacian) matrix.


2021 ◽  
Vol 45 (02) ◽  
pp. 299-307
Author(s):  
HANYUAN DENG ◽  
TOMÁŠ VETRÍK ◽  
SELVARAJ BALACHANDRAN

The harmonic index of a conected graph G is defined as H(G) = ∑ uv∈E(G) 2 d(u)+d-(v), where E(G) is the edge set of G, d(u) and d(v) are the degrees of vertices u and v, respectively. The spectral radius of a square matrix M is the maximum among the absolute values of the eigenvalues of M. Let q(G) be the spectral radius of the signless Laplacian matrix Q(G) = D(G) + A(G), where D(G) is the diagonal matrix having degrees of the vertices on the main diagonal and A(G) is the (0, 1) adjacency matrix of G. The harmonic index of a graph G and the spectral radius of the matrix Q(G) have been extensively studied. We investigate the relationship between the harmonic index of a graph G and the spectral radius of the matrix Q(G). We prove that for a connected graph G with n vertices, we have ( 2 || ----n----- ||{ 2 (n − 1), if n ≥ 6, -q(G-)- ≤ | 16-, if n = 5, H (G ) || 5 |( 3, if n = 4, and the bounds are best possible.


2018 ◽  
Vol 10 (03) ◽  
pp. 1850035 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Somnath Paul

The distance signless Laplacian spectral radius of a connected graph [Formula: see text] is the largest eigenvalue of the distance signless Laplacian matrix of [Formula: see text], defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix of vertex transmissions of [Formula: see text]. In this paper, we determine some bounds on the distance signless Laplacian spectral radius of [Formula: see text] based on some graph invariants, and characterize the extremal graphs. In addition, we define distance signless Laplacian energy, similar to that in [J. Yang, L. You and I. Gutman, Bounds on the distance Laplacian energy of graphs, Kragujevac J. Math. 37 (2013) 245–255] and give some bounds on the distance signless Laplacian energy of graphs.


Author(s):  
Muhuo Liu ◽  
Bolian Liu ◽  
Kinkar Das

Suppose π = (d_1,d_2,...,d_n) and π′ = (d′_1,d′_2,...,d′_n) are two positive non- increasing degree sequences, write π ⊳ π′ if and only if π \neq π′, \sum_{i=1}^n d_i = \sum_{i=1}^n d′_i, and \sum_{i=1}^j d_i ≤ \sum_{i=1}^j d′_i for all j = 1, 2, . . . , n. Let ρ(G) and μ(G) be the spectral radius and signless Laplacian spectral radius of G, respectively. Also let G and G′ be the extremal graphs with the maximal (signless Laplacian) spectral radii in the class of connected graphs with π and π′ as their degree sequences, respectively. If π ⊳ π′ can deduce that ρ(G) < ρ(G′) (respectively, μ(G) < μ(G′)), then it is said that the spectral radii (respectively, signless Laplacian spectral radii) of G and G′ satisfy the majorization theorem. This paper presents a survey to the recent results on the theory and application of the majorization theorem in graph spectrum and topological index theory.


2013 ◽  
Vol 219 (10) ◽  
pp. 5025-5032 ◽  
Author(s):  
A. Dilek (Güngör) Maden ◽  
Kinkar Ch. Das ◽  
A. Sinan Çevik

Author(s):  
Subarsha Banerjee ◽  
Avishek Adhikari

Let [Formula: see text] denote the power graph of a finite group [Formula: see text]. Let [Formula: see text] denote the Signless Laplacian spectral radius of [Formula: see text]. In this paper, we give lower and upper bounds on [Formula: see text] for any [Formula: see text] and find those graphs for which the extremal values are attained. We give a comparison between the bounds obtained and exact value of [Formula: see text] for any [Formula: see text]. We then find the eigenvalues of [Formula: see text] and give lower and upper bounds on the spectral radius of [Formula: see text]. When [Formula: see text] and [Formula: see text] where [Formula: see text] are primes and [Formula: see text] is a positive integer, we obtain sharper bounds on [Formula: see text]. Finally, we make a conjecture on [Formula: see text] for any [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document