scholarly journals Generalized cline’s formula for g-Drazin inverse in a ring

Filomat ◽  
2021 ◽  
Vol 35 (8) ◽  
pp. 2573-2583
Author(s):  
Huanyin Chen ◽  
Marjan Abdolyousefi

In this paper, we give a generalized Cline?s formula for the generalized Drazin inverse. Let R be a ring, and let a, b, c, d ? R satisfying (ac)2 = (db)(ac), (db)2 = (ac)(db), b(ac)a = b(db)a, c(ac)d = c(db)d. Then ac ? Rd if and only if bd ? Rd. In this case, (bd)d = b((ac)d)2d: We also present generalized Cline?s formulas for Drazin and group inverses. Some weaker conditions in a Banach algebra are also investigated. These extend the main results of Cline?s formula on g-Drazin inverse of Liao, Chen and Cui (Bull. Malays. Math. Soc., 37(2014), 37-42), Lian and Zeng (Turk. J. Math., 40(2016), 161-165) and Miller and Zguitti (Rend. Circ. Mat. Palermo, II. Ser., 67(2018), 105-114). As an application, new common spectral property of bounded linear operators over Banach spaces is obtained.

Author(s):  
Huanyin Chen ◽  
Marjan Sheibani Abdolyousefi

Let [Formula: see text] be an associative ring with an identity and suppose that [Formula: see text] satisfy [Formula: see text] If [Formula: see text] has generalized Drazin (respectively, p-Drazin, Drazin) inverse, we prove that [Formula: see text] has generalized Drazin (respectively, p-Drazin, Drazin) inverse. In particular, as applications, we obtain new common spectral property of bounded linear operators over Banach spaces.


1996 ◽  
Vol 38 (3) ◽  
pp. 367-381 ◽  
Author(s):  
J. J. Koliha

The main theme of this paper can be described as a study of the Drazin inverse for bounded linear operators in a Banach space X when 0 is an isolated spectral point ofthe operator. This inverse is useful for instance in the solution of differential equations formulated in a Banach space X. Since the elements of X rarely enter into our considerations, the exposition seems to gain in clarity when the operators are regarded as elements of the Banach algebra L(X).


Filomat ◽  
2019 ◽  
Vol 33 (8) ◽  
pp. 2249-2255
Author(s):  
Huanyin Chen ◽  
Marjan Abdolyousefi

It is well known that for an associative ring R, if ab has g-Drazin inverse then ba has g-Drazin inverse. In this case, (ba)d = b((ab)d)2a. This formula is so-called Cline?s formula for g-Drazin inverse, which plays an elementary role in matrix and operator theory. In this paper, we generalize Cline?s formula to the wider case. In particular, as applications, we obtain new common spectral properties of bounded linear operators.


2016 ◽  
Vol 160 (3) ◽  
pp. 413-421 ◽  
Author(s):  
TOMASZ KANIA ◽  
NIELS JAKOB LAUSTSEN

AbstractA recent result of Leung (Proceedings of the American Mathematical Society, 2015) states that the Banach algebra ℬ(X) of bounded, linear operators on the Banach space X = (⊕n∈$\mathbb{N}$ ℓ∞n)ℓ1 contains a unique maximal ideal. We show that the same conclusion holds true for the Banach spaces X = (⊕n∈$\mathbb{N}$ ℓ∞n)ℓp and X = (⊕n∈$\mathbb{N}$ ℓ1n)ℓp whenever p ∈ (1, ∞).


2019 ◽  
Vol 12 (05) ◽  
pp. 1950084
Author(s):  
Anuradha Gupta ◽  
Ankit Kumar

Let [Formula: see text] and [Formula: see text] be two bounded linear operators on a Banach space [Formula: see text] and [Formula: see text] be a positive integer such that [Formula: see text] and [Formula: see text], then [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] have some common spectral properties. Drazin invertibility and polaroidness of these operators are also discussed. Cline’s formula for Drazin inverse in a ring with identity is also studied under the assumption that [Formula: see text] for some positive integer [Formula: see text].


2013 ◽  
Vol 846-847 ◽  
pp. 1286-1290
Author(s):  
Shi Qiang Wang ◽  
Li Guo ◽  
Lei Zhang

In this paper, we investigate additive properties for the generalized Drazin inverse of bounded linear operators on Banach space . We give explicit representation of the generalized Drazin inverse in terms of under some conditions.


2020 ◽  
Vol 55 (2) ◽  
pp. 267-276
Author(s):  
Qingping Zeng ◽  
◽  
Kai Yan ◽  
Zhenying Wu ◽  
◽  
...  

In this paper, we continue to investigate common properties of the products ac and bd in various categories under the assumption acd=dbd and dba=aca. These properties include generalized strongly Drazin invertibility and generalized Hirano invertibility in rings, abstract index of Fredholm elements and B-Fredholm elements in the Banach algebra context, complementability of kernels and ranges for bounded linear operators on Banach spaces.


2001 ◽  
Vol 70 (2) ◽  
pp. 189-198 ◽  
Author(s):  
Vladimir Rakočevič ◽  
Yimin Wei

AbstractWe study the perturbation of the generalized Drazin inverse for the elements of Banach algebras and bounded linear operators on Banach space. This work, among other things, extends the results obtained by the second author and Guorong Wang on the Drazin inverse for matrices.


Sign in / Sign up

Export Citation Format

Share Document