scholarly journals Water glass derived catalyst for the synthesis of glycerol carbonate via the transesterification reaction between glycerol and dimethyl carbonate

2019 ◽  
Vol 84 (6) ◽  
pp. 609-622
Author(s):  
Lanlan Xu ◽  
Song Wang ◽  
Patrick Okoye ◽  
Jianye Wang ◽  
Sanxi Li ◽  
...  

Water glasses with different modulus (mole ratio of SiO2 to Na2O) were applied as a raw material to prepare five solid base catalysts for the synthesis of glycerol carbonate (GC) by the transesterification reaction between glycerol and dimethyl carbonate (DMC). The structure and properties of the five water glass-derived catalysts were investigated by XRD, FT-IR, FESEM, BET and acid?base titration methods. The catalysts with relatively low modulus, including 1.0, 1.5 and 2.0, presented good catalytic abilities, among which the catalyst derived from water glass with 2.0 modulus (WG-2.0) was chosen as the optimal catalyst in the synthesis of GC. This was because WG- -2.0 showed the highest BET surface area, relatively high total basicity, and needed a less amount of NaOH during the preparation process. In the optimization experiments, this catalyst exhibited good catalytic ability with the glycerol conversion of 96.3 % and GC yield of 94.1 % under the condition of glycerol to DMC mole ratio of 1:4, WG-2.0 amount of 4 wt. %, reaction temperature of 348 K and reaction time of 90 min. Furthermore, the reusability experiment of WG-2.0 was also conducted and the results indicated that WG- -2.0 could be reused five times without significant reduction in its catalytic ability.

2019 ◽  
Vol 62 (4) ◽  
Author(s):  
Venkatesh Venkatesh ◽  
Mohamed Shamshuddin Sathgatta Zaheeruddin ◽  
Pratap Srinivasa Raghavendra

Abstract. Solid base catalysts such as Ceria-Zirconia-Magnesia with different mole ratio of magnesium were prepared by impregnation method and characterized by CO2-TPD, PXRD, FT-IR and ICP-OES analysis. The catalytic activity of the catalysts was tested in the liquid phase transesterification of glycerol with dimethyl carbonate to synthesise glycerol carbonate. Optimization of reaction condition was carried out by varying the molar ratio of the reactants, temperature and time. The highest yield (97 %) of glycerol carbonate was obtained at a reactant molar ratio of 1:3 at 120 °C in 6 h. Study of reusability and reactivation of solid base catalyst was also taken up. A suitable base catalysed mechanism for the formation of glycerol carbonate is proposed.Resumen. Se prepararon catalizadores de base sólida como Ceria-Zirconia-Magnesia con diferentes proporciones molares de magnesio mediante el método de impregnación y se caracterizaron por análisis de CO2-TPD, PXRD, FT-IR e ICP-OES. La actividad catalítica de los catalizadores se probó en la transesterificación en fase líquida de glicerol con carbonato de dimetilo para sintetizar carbonato de glicerol. La optimización de las condiciones de reacción se llevó a cabo variando la relación molar de los reactivos, la temperatura y el tiempo. El mayor rendimiento (97 %) de carbonato de glicerol se obtuvo a una relación molar reactiva de 1:3 a 120 °C en 6 h. También se realizó un estudio de la reutilización y reactivación del catalizador de base sólida. Se propone un mecanismo catalítico básico adecuado para la formación de carbonato de glicerol.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Karthikeyan Chelladurai ◽  
Manivannan Rajamanickam

Hydrotalcite, also known as aluminum-magnesium layered double hydroxide (LDH) or anionic clay, is a synthetic compound that was broadly investigated in the past decade due to its many potential applications. In this work, we present an environmentally benign process for the transesterification (methanolysis) of neem oil to fatty acid methyl esters (FAME) using Zn-Mg-Al hydrotalcites as solid base catalysts in a heterogeneous manner. The catalysts were characterized by XRD, FT-IR, TPD-CO2, and the BET surface area analysis. It is well-known that the catalytic performance of hydrotalcite is dramatically increased through the incorporation of Zn into the surface of Mg-Al hydrotalcite material. The optimized parameters, 10 : 1 methanol/oil molar ratio with 7.5 g catalysts reacted under stirring speed 450 rpm at 65°C for 4 h reaction, gave a maximum ester conversion of 90.5% for the sample with Zn-Mg-Al ratio of 3 : 3 : 1.


2006 ◽  
Vol 7 (1) ◽  
pp. 6-10 ◽  
Author(s):  
Mouhua Wang ◽  
Hui Wang ◽  
Ning Zhao ◽  
Wei Wei ◽  
Yuhan Sun

2018 ◽  
Vol 72 (8) ◽  
pp. 1963-1971 ◽  
Author(s):  
Yunhui Liao ◽  
Feng Li ◽  
Xin Dai ◽  
Ning Zhao ◽  
Fukui Xiao

RSC Advances ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. 785-791 ◽  
Author(s):  
Yunhui Liao ◽  
Feng Li ◽  
Yanfeng Pu ◽  
Feng Wang ◽  
Xin Dai ◽  
...  

The CA-F− catalyst modified with Al3+ and F− was highly active and recyclable for dimethyl carbonate synthesis.


ChemInform ◽  
2010 ◽  
Vol 33 (2) ◽  
pp. no-no
Author(s):  
Masaki Okamoto ◽  
Kuon Miyazaki ◽  
Akihiro Kado ◽  
Eiichi Suzuki

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jianye Wang ◽  
Zhu Wang ◽  
Haifeng Liu ◽  
Song Wang ◽  
Yifeng Sun

Na2CO3 was loaded onto waste carbide slag (CS) by impregnation-calcination method to prepare the solid base catalyst, which was used to synthesize glycerol carbonate (GC) by the transesterification of glycerol with dimethyl carbonate (DMC). The prepared catalysts were characterized by a scanning electron microscope (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Brunner−Emmet−Teller (BET) techniques. The catalyst 15 wt.% Na2CO3-CS-800, which was prepared by impregnating CS to the Na2CO3 solution with the concentration of 15 wt.% weight of CS and calcined at 800°C for 3 hours, showed an excellent catalytic ability. When it was applied in the catalytic synthesis of GC, 98.1% glycerol conversion and 96.0% GC yield were achieved in 90 mins at 75°C with the catalyst dosage of 3 wt.% to total reactants and the DMC to glycerol molar ratio of 5. More importantly, the loading of Na2CO3 can effectively improve the reusability of catalyst. The 15 wt.% Na2CO3-CS-800 can still achieve 83.6% glycerol conversion and 80.5% GC yield after five-time reuse. Meanwhile, under the same reaction conditions, the CS-800, which was obtained by calcining CS at 800°C for 3 hours, experienced significant activity reduction with only 15.2% glycerol conversion and 14.1% GC yield after five-time reuse. FTIR and XRD characterization revealed that CO32- might play a key role in preserving active catalytic CaO component by forming protective CaCO3 shell on the catalyst surface.


Sign in / Sign up

Export Citation Format

Share Document