scholarly journals Environmentally Benign Neem Biodiesel Synthesis Using Nano-Zn-Mg-Al Hydrotalcite as Solid Base Catalysts

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Karthikeyan Chelladurai ◽  
Manivannan Rajamanickam

Hydrotalcite, also known as aluminum-magnesium layered double hydroxide (LDH) or anionic clay, is a synthetic compound that was broadly investigated in the past decade due to its many potential applications. In this work, we present an environmentally benign process for the transesterification (methanolysis) of neem oil to fatty acid methyl esters (FAME) using Zn-Mg-Al hydrotalcites as solid base catalysts in a heterogeneous manner. The catalysts were characterized by XRD, FT-IR, TPD-CO2, and the BET surface area analysis. It is well-known that the catalytic performance of hydrotalcite is dramatically increased through the incorporation of Zn into the surface of Mg-Al hydrotalcite material. The optimized parameters, 10 : 1 methanol/oil molar ratio with 7.5 g catalysts reacted under stirring speed 450 rpm at 65°C for 4 h reaction, gave a maximum ester conversion of 90.5% for the sample with Zn-Mg-Al ratio of 3 : 3 : 1.

2013 ◽  
Vol 678 ◽  
pp. 268-272 ◽  
Author(s):  
R. Manivannan ◽  
C. Karthikeyan

Abstract Methyl ester of fatty acids, derived from vegetable oils or animal fats are known as biodiesel. The most common method of biodiesel production is transesterification (alcoholysis) of oil (triglycerides) with methanol in the presence of a catalyst which gives biodiesel (fatty acid methyl esters, FAME) and glycerol (by product). In this work, an environmentally benign process for the methanolysis of neem oil to methyl esters using Mg–Al nano hydrotalcites as solid base catalysts in a heterogeneous manner was developed. The effect of the reaction temperature, reaction time, catalyst amount, and methanol /oil molar ratio on the Mg-Al nano hydrotalcite was analyzed. The nano catalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM). Biodiesel produced from the neem oil by using Mg-Al nano hydrotalcite catalyst was analyzed by gas chromatography.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 700 ◽  
Author(s):  
Koguleshun Subramaniam ◽  
Sasidevan Munusamy ◽  
Fei-ling Pua ◽  
Mohd Aizat Mohd Nasir ◽  
Rohaya Othman ◽  
...  

Calcium rich solid base catalyst was synthesized from local waste carbide lime and its catalytic performance was evaluated via biodiesel production. Carbide lime waste was used to produce CLW-I and CLW-II solid base catalyst using different preparation methods. Characterization including base strength analysis, scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were investigated. Catalytic strength was examined by deploying the solid base catalysts for transesterification reaction of palm oil. Fourier Transform Infra-red (FTIR) was used to analyze the presence of ester group in biodiesel. The yield of biodiesel conversion was calculated based on the mass of biodiesel and glycerol. The highest biodiesel conversion rate of 75.30% was achieved by CLW-I solid base catalyst at 9% loading. The good catalytic performance of carbide lime waste derived solid base catalysts proves that it has high potential to replace the usage of conventional catalyst in the biodiesel industry.


2019 ◽  
Vol 84 (6) ◽  
pp. 609-622
Author(s):  
Lanlan Xu ◽  
Song Wang ◽  
Patrick Okoye ◽  
Jianye Wang ◽  
Sanxi Li ◽  
...  

Water glasses with different modulus (mole ratio of SiO2 to Na2O) were applied as a raw material to prepare five solid base catalysts for the synthesis of glycerol carbonate (GC) by the transesterification reaction between glycerol and dimethyl carbonate (DMC). The structure and properties of the five water glass-derived catalysts were investigated by XRD, FT-IR, FESEM, BET and acid?base titration methods. The catalysts with relatively low modulus, including 1.0, 1.5 and 2.0, presented good catalytic abilities, among which the catalyst derived from water glass with 2.0 modulus (WG-2.0) was chosen as the optimal catalyst in the synthesis of GC. This was because WG- -2.0 showed the highest BET surface area, relatively high total basicity, and needed a less amount of NaOH during the preparation process. In the optimization experiments, this catalyst exhibited good catalytic ability with the glycerol conversion of 96.3 % and GC yield of 94.1 % under the condition of glycerol to DMC mole ratio of 1:4, WG-2.0 amount of 4 wt. %, reaction temperature of 348 K and reaction time of 90 min. Furthermore, the reusability experiment of WG-2.0 was also conducted and the results indicated that WG- -2.0 could be reused five times without significant reduction in its catalytic ability.


2019 ◽  
Vol 62 (4) ◽  
Author(s):  
Venkatesh Venkatesh ◽  
Mohamed Shamshuddin Sathgatta Zaheeruddin ◽  
Pratap Srinivasa Raghavendra

Abstract. Solid base catalysts such as Ceria-Zirconia-Magnesia with different mole ratio of magnesium were prepared by impregnation method and characterized by CO2-TPD, PXRD, FT-IR and ICP-OES analysis. The catalytic activity of the catalysts was tested in the liquid phase transesterification of glycerol with dimethyl carbonate to synthesise glycerol carbonate. Optimization of reaction condition was carried out by varying the molar ratio of the reactants, temperature and time. The highest yield (97 %) of glycerol carbonate was obtained at a reactant molar ratio of 1:3 at 120 °C in 6 h. Study of reusability and reactivation of solid base catalyst was also taken up. A suitable base catalysed mechanism for the formation of glycerol carbonate is proposed.Resumen. Se prepararon catalizadores de base sólida como Ceria-Zirconia-Magnesia con diferentes proporciones molares de magnesio mediante el método de impregnación y se caracterizaron por análisis de CO2-TPD, PXRD, FT-IR e ICP-OES. La actividad catalítica de los catalizadores se probó en la transesterificación en fase líquida de glicerol con carbonato de dimetilo para sintetizar carbonato de glicerol. La optimización de las condiciones de reacción se llevó a cabo variando la relación molar de los reactivos, la temperatura y el tiempo. El mayor rendimiento (97 %) de carbonato de glicerol se obtuvo a una relación molar reactiva de 1:3 a 120 °C en 6 h. También se realizó un estudio de la reutilización y reactivación del catalizador de base sólida. Se propone un mecanismo catalítico básico adecuado para la formación de carbonato de glicerol.


RSC Advances ◽  
2015 ◽  
Vol 5 (87) ◽  
pp. 71278-71286 ◽  
Author(s):  
Sheng Xu ◽  
Hong-Yan Zeng ◽  
Chao-Rong Cheng ◽  
Heng-Zhi Duan ◽  
Jing Han ◽  
...  

Mg–Fe LDO with different Mg/Fe molar ratios as catalysts were adopted for transesterification of microalgae oil, and the catalytic performance of the catalysts was closely related to their basicity and crystallinity.


2011 ◽  
Vol 236-238 ◽  
pp. 641-644 ◽  
Author(s):  
Feng Xian Ma ◽  
Jing Xia Li

In this paper, biodiesel is successfully produced by the ester exchange reaction with solid base catalyst of K2O/Ti-HMS based on soybean oil as raw materials. The result of which shows that K2O/Ti-HMS has good ester exchange activity as solid base catalyst and the catalyst easily is separated from products. By single factor experiment, the influence of K2O load, molar ratio of methanol and oil and catalyst dosage on the biodiesel conversion rate is researched and the optimal relationship between the above parameters is obtained.


2013 ◽  
Vol 53 ◽  
pp. 377-383 ◽  
Author(s):  
Pingmei Guo ◽  
Chang Zheng ◽  
Mingming Zheng ◽  
Fenghong Huang ◽  
Wenlin Li ◽  
...  

2012 ◽  
Vol 550-553 ◽  
pp. 424-428 ◽  
Author(s):  
Jian Jie Zhang ◽  
Zi Li Liu ◽  
Zu Zeng Qin ◽  
Yan Liu ◽  
Qi Ying Wang ◽  
...  

Mg-Al composite oxide (MgAlY-LDO) solid base catalysts were prepared via the coprecipitation method, followed by calcinations at high temperatures. Isophorone synthesis from acetone condensation was also investigated. The catalysts were characterized via X-ray diffraction analysis, Fourier transform infrared spectroscopy, CO2 temperature-programmed desorption, and Brunauer-Emmett-Teller analysis. After doping with Y, the MgAl-LDO showed higher catalytic activity at a reaction temperature of 300 °C, 100 kPa and WHSV 6.3 h-1. Furthermore, the conversion of acetone and the selectivity of isophorone increased from 17.8% and 11.0% to 37.5% and 58.7%, respectively. These results indicate that the basicity of MgAlY-LDO as well as the number of its strong base centers increased after Y doping. The pore volume and size of MgAlY-LDO increased because of the increased hydrotalcite layer space caused by the big Y3+ ion. However, the crystal structure of hydrotalcite was remained. Y2O3 was evenly dispersed in MgAlY-LDO at low Y doping amounts. As the doping amount increased, the layer structure of hydrotalcite became distorted, thereby affecting the crystallinity of the hydrotalcite. Some Y3+ ions emerged from the Mg2+ lattice after doping with a high Y3+ concentration.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 992
Author(s):  
Valeriia Korolova ◽  
Oleg Kikhtyanin ◽  
Martin Veselý ◽  
Dan Vrtiška ◽  
Iva Paterová ◽  
...  

Hydrotalcites (HTCs) are promising solid base catalysts to produce advanced biofuels by aldol condensation. Their main potential lies in the tunability of their acid-base properties by varying their composition. However, the relationship between the composition of hydrotalcites, their basicity, and their catalytic performance has not yet been fully revealed. Here, we investigate systematically the preparation of HTCs with the general formula of Mg6M3+2(OH)16CO3·4H2O, where M3+ stands for Al, Ga, Fe, and In, while keeping the Mg/M3+ equal to 3. We use an array of analytical methods including XRD, N2 physisorption, CO2-TPD, TGA-MS, FTIR-ATR, and SEM to assess changes in the properties and concluded that the nature of M3+ affected the HTC crystallinity. We show that the basicity of the HTC-derived mixed oxides decreased with the increase in atomic weight of M3+, which was reflected by decreased furfural conversion in its aldol condensation with acetone. We demonstrate that all MgM3+ mixed oxides can be fully rehydrated, which boosted their activity in aldol condensation. Taking all characterization results together, we conclude that the catalytic performance of the rehydrated HTCs is determined by the “host” MgO component, rather than the nature of M3+.


Sign in / Sign up

Export Citation Format

Share Document