biodiesel synthesis
Recently Published Documents


TOTAL DOCUMENTS

698
(FIVE YEARS 253)

H-INDEX

58
(FIVE YEARS 10)

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 210
Author(s):  
Vitor Vlnieska ◽  
Aline Silva Muniz ◽  
Angelo Roberto dos Santos Oliveira ◽  
Maria Aparecida Ferreira César-Oliveira ◽  
Danays Kunka

Biodiesel production from first-generation feedstock has shown a strong correlation with the increase in deforestation and the necessity of larger areas for land farming. Recent estimation from the European Federation for Transport and Environment evidenced that since the 2000s decade, an area equal to the Netherlands was deforested to supply global biodiesel demand, mainly originating from first-generation feedstock. Nevertheless, biodiesel is renewable, and it can be a greener source of energy than petroleum. A promising approach to make biodiesel independent from large areas of farming is to shift as much as possible the biodiesel production chain to second and third generations of feedstock. The second generation presents three main advantages, where it does not compete with the food industry, its commercial value is negligible, or none, and its usage as feedstock for biodiesel production reduces the overall waste disposal. In this manuscript, we present an oligomeric catalyst designed to be multi-functional for second-generation feedstock transesterification reactions, mainly focusing our efforts to optimize the conversion of tallow fat and sauteing oil to FAME and FAEE, applying our innovative catalyst. Named as Oligocat, our catalyst acts as a Brønsted-Lowry acid catalyst, providing protons to the reaction medium, and at the same time, with the course of the reaction, it sequesters glycerol molecules from the medium and changes its physical phase during the transesterification reaction. With this set of properties, Oligocat presents a pseudo-homogenous behavior, reducing the purification and separation steps of the biodiesel process production. Reaction conditions were optimized applying a 42 factorial planning. The output parameter evaluated was the conversion rate of triacylglycerol to mono alkyl esters, measured through gel permeation chromatography (GPC). After the optimization studies, a conversion yield of 96.7 (±1.9) wt% was achieved, which allows classifying the obtained mono alkyl esters as biodiesel by ASTM D6751 or EN 14214:2003. After applying the catalyst in three reaction cycles, Oligocat still presented a conversion rate above 96.5 wt% and as well an excellent recovery rate.


2022 ◽  
Author(s):  
Akinola David Ogunsola ◽  
Modiu Olayinka Durowoju ◽  
Abass Olanrewaju Alade ◽  
Simeon Olatayo Jekayinfa ◽  
Oyetola Ogunkunle

Shea butter oil (SBO) is underutilized in the biodiesel production industry in Nigeria because of its high free fatty acid (FFA) which reduces its biodiesel yield. This research aimed at...


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1537
Author(s):  
Gayathri Arun ◽  
Muhammad Ayoub ◽  
Zulqarnain Zulqarnain ◽  
Umesh Deshannavar ◽  
Mohd Hizami Mohd Mohd Yusoff ◽  
...  

Biodiesel production has gained considerable importance over the last few decades due to the increase in fossil fuel prices as well as toxic emissions of oxygen and nitrogen. The production of biodiesel via catalytic transesterification produces crude glycerol as a co-product along with biodiesel, amounting to 10% of the total biodiesel produced. Glycerol has a low value in its impure form, and the purification of glycerol requires sophisticated technologies and is an expensive process. The conversion of crude glycerol into value-added chemicals such as solketal is the best way to improve the sustainability of biodiesel synthesis using the transesterification reaction. Therefore, the conversion of crude glycerol into the solketal was investigated in a batch reactor simulation model developed by the Aspen Plus V11.0. The non-random two liquid theory (NRTL) method was used as a thermodynamic property package to study the effect of four input ketalization parameters. The model was validated with the findings of previous experimental studies of solketal synthesis using sulfuric acid as a catalyst. The influence of the following operating parameters was investigated: reaction time of 10,000 to 60,000 s, reaction temperature of 303 to 323 K, acetone to glycerol molar ratio of 2:1 to 10:1, and catalyst concentration of 0.005 to 0.03 wt %. The optimum solketal yield of 81.36% was obtained at the optimized conditions of 313 K, 9:1, 0.03 wt %, and 40,000 s. The effect of each input parameter on the ketalization process and interaction between input and output parameters was investigated by using the response surface methodology (RSM) optimizer. The relationship between independent and response variables developed by RSM fit most of the simulation data, which showed the accuracy of the model. A second-order differential equation fit the simulation data well and showed an R2 value of 0.99. According to the findings of RSM, the influence of catalyst amount, acetone to glycerol molar ratio, and reaction time were more significant on solketal yield. The effect of temperature on the performance of the reaction was not found to be significant because of the exothermic nature of the process. The findings of this study showed that biodiesel-derived glycerol can be effectively utilized to produce solketal, which can be used for a wider range of applications such as a fuel additive. However, further work is required to enhance the solketal yield by developing new heterogeneous catalysts so that the industrial implementation of its production can be made possible.


Author(s):  
Bisheswar Karmakar ◽  
Sucharita Pal ◽  
Konga Gopikrishna ◽  
Onkar Nath Tiwari ◽  
Gopinath Halder

2021 ◽  
Vol 2129 (1) ◽  
pp. 012063
Author(s):  
Zul Ilham ◽  
Shiro Saka

Abstract As an alternative route from the conventional alkali-catalyzed biodiesel production, the supercritical dimethyl carbonate method had been proven to successfully produce biodiesel with the co-production of glycerol carbonate in a one-step and two-step non-catalytic methods. Biodiesel or fatty acid methyl esters (FAME) obtained were high in yield, comparable with supercritical methanol method and satisfy the international standards for use as biodiesel in engines. In this paper, key parameters for the processes such as reaction temperature, pressure, time, molar ratio of dimethyl carbonate to oil, the FAME yield, thermal decomposition, degree of denaturation, tocopherol content, oxidation stability and fuel properties were discussed. The optimized condition for supercritical dimethyl carbonate method is at 300°C/20MPa/20min/42:1 molar ratio of dimethyl carbonate to oil with a satisfactory yield of FAME at 97.4wt%. The extensive approach in this study is very important to complement mathematical model for optimization in the literatures, and to ensure that only high-quality biodiesel could be produced by supercritical dimethyl carbonate method under an optimized condition.


Sign in / Sign up

Export Citation Format

Share Document