scholarly journals Characteristic Cycles and Wave Front Cycles of Representations of Reductive Lie Groups

2000 ◽  
Vol 151 (3) ◽  
pp. 1071 ◽  
Author(s):  
Wilfried Schmid ◽  
Kari Vilonen
Author(s):  
Ignasi Mundet i Riera

This chapter explains the correspondence between local systems on a punctured Riemann surface with the structure group being a real reductive Lie group G, and parabolic G-Higgs bundles. The chapter describes the objects involved in this correspondence, taking some time to motivate them by recalling the definitions of G-Higgs bundles without parabolic structure and of parabolic vector bundles. Finally, it explains the relevant polystability condition and the correspondence between local systems and Higgs bundles.


2019 ◽  
Vol 6 (1) ◽  
pp. 194-227 ◽  
Author(s):  
Josef F. Dorfmeister ◽  
Walter Freyn ◽  
Shimpei Kobayashi ◽  
Erxiao Wang

AbstractThe classical result of describing harmonic maps from surfaces into symmetric spaces of reductive Lie groups [9] states that the Maurer-Cartan form with an additional parameter, the so-called loop parameter, is integrable for all values of the loop parameter. As a matter of fact, the same result holds for k-symmetric spaces over reductive Lie groups, [8].In this survey we will show that to each of the five different types of real forms for a loop group of A2(2) there exists a surface class, for which some frame is integrable for all values of the loop parameter if and only if it belongs to one of the surface classes, that is, minimal Lagrangian surfaces in ℂℙ2, minimal Lagrangian surfaces in ℂℍ2, timelike minimal Lagrangian surfaces in ℂℍ12, proper definite affine spheres in ℝ3 and proper indefinite affine spheres in ℝ3, respectively.


1978 ◽  
Vol 48 (3) ◽  
pp. 207-220 ◽  
Author(s):  
Wulf Rossmann

Author(s):  
Michel Raibaut

Abstract The concept of wave front set was introduced in 1969–1970 by Sato in the hyperfunctions context [1, 34] and by Hörmander [23] in the $\mathcal C^{\infty }$ context. Howe in [25] used the theory of wave front sets in the study of Lie groups representations. Heifetz in [22] defined a notion of wave front set for distributions in the $p$-adic setting and used it to study some representations of $p$-adic Lie groups. In this article, we work in the $k\mathopen{(\!(} t \mathopen{)\!)}$-setting with $k$ a Characteristic 0 field. In that setting, balls are no longer compact but working in a definable context provides good substitutes for finiteness and compactness properties. We develop a notion of definable distributions in the framework of [13] and [14] for which we define notions of singular support and $\Lambda$-wave front sets (relative to some multiplicative subgroups $\Lambda$ of the valued field) and we investigate their behavior under natural operations like pullback, tensor product, and products of distributions.


1981 ◽  
Vol 15 (4) ◽  
pp. 490-529 ◽  
Author(s):  
D. P. Zhelobenko

Sign in / Sign up

Export Citation Format

Share Document