toda lattice
Recently Published Documents


TOTAL DOCUMENTS

691
(FIVE YEARS 18)

H-INDEX

47
(FIVE YEARS 0)

Author(s):  
Meng-Li Qin ◽  
Xiao-Yong Wen ◽  
Cui-Lian Yuan

Under consideration is a modified Toda lattice system with a perturbation parameter, which may describe the particle motion in a lattice. With the aid of symbolic computation Maple, the discrete generalized [Formula: see text]-fold Darboux transformation (DT) of this system is constructed for the first time. Different types of exact solutions are derived by applying the resulting DT through choosing different [Formula: see text]. Specifically, standard soliton solutions, rational solutions and their mixed solutions are given via the [Formula: see text]-fold DT, [Formula: see text]-fold DT and [Formula: see text]-fold DT, respectively. Limit states of various exact solutions are analyzed via the asymptotic analysis technique. Compared with the known results, we find that the asymptotic states of mixed solutions of standard soliton and rational solutions are consistent with the asymptotic analysis results of solitons and rational solutions alone. Soliton interaction and propagation phenomena are shown graphically. Numerical simulations are used to explore relevant soliton dynamical behaviors. These results and properties might be helpful for understanding lattice dynamics.



Author(s):  
Fangcheng Fan

In this paper, we investigate a four-component Toda lattice (TL), which may be used to model the wave propagation in lattices just like the famous TL. By means of the Lax pair and gauge transformation, we construct the [Formula: see text]-fold Darboux transformation (DT), which enables us to obtain multi-soliton or multi-solitary wave solution without complex iterative process. Through the obtained DT, [Formula: see text]-fold explicit exact solutions of the system and their figures with proper parameters are presented from which we find the [Formula: see text]-fold solution shows two-solitary wave structure, the amplitude and shape of the wave change with time. Finally, we derive an infinite number of conservation laws formulaically to illustrate the integrability of the system.



Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2315
Author(s):  
Meng-Li Qin ◽  
Xiao-Yong Wen ◽  
Manwai Yuen

This paper investigates a relativistic Toda lattice system with an arbitrary parameter that is a very remarkable generalization of the usual Toda lattice system, which may describe the motions of particles in lattices. Firstly, we study some integrable properties for this system such as Hamiltonian structures, Liouville integrability and conservation laws. Secondly, we construct a discrete generalized (m,2N−m)-fold Darboux transformation based on its known Lax pair. Thirdly, we obtain some exact solutions including soliton, rational and semi-rational solutions with arbitrary controllable parameters and hybrid solutions by using the resulting Darboux transformation. Finally, in order to understand the properties of such solutions, we investigate the limit states of the diverse exact solutions by using graphic and asymptotic analysis. In particular, we discuss the asymptotic states of rational solutions and exponential-and-rational hybrid solutions graphically for the first time, which might be useful for understanding the motions of particles in lattices. Numerical simulations are used to discuss the dynamics of some soliton solutions. The results and properties provided in this paper may enrich the understanding of nonlinear lattice dynamics.



Author(s):  
Zhiguo Xu

Starting from a more generalized discrete [Formula: see text] matrix spectral problem and using the Tu scheme, some integrable lattice hierarchies (ILHs) are presented which include the well-known relativistic Toda lattice hierarchy and some new three-field ILHs. Taking one of the hierarchies as example, the corresponding Hamiltonian structure is constructed and the Liouville integrability is illustrated. For the first nontrivial lattice equation in the hierarchy, the [Formula: see text]-fold Darboux transformation (DT) of the system is established basing on its Lax pair. By using the obtained DT, we generate the discrete [Formula: see text]-soliton solutions in determinant form and plot their figures with proper parameters, from which we get some interesting soliton structures such as kink and anti-bell-shaped two-soliton, kink and anti-kink-shaped two-soliton and so on. These soliton solutions are much stable during the propagation, the solitary waves pass through without change of shapes, amplitudes, wave-lengths and directions. Finally, we derive infinitely many conservation laws of the system and give the corresponding conserved density and associated flux formulaically.



2021 ◽  
Vol 62 (9) ◽  
pp. 092701
Author(s):  
Katsuki Kobayashi ◽  
Satoshi Tsujimoto


2021 ◽  
Vol 27 (5) ◽  
Author(s):  
Peter Koroteev ◽  
Petr P. Pushkar ◽  
Andrey V. Smirnov ◽  
Anton M. Zeitlin

AbstractWe define quantum equivariant K-theory of Nakajima quiver varieties. We discuss type A in detail as well as its connections with quantum XXZ spin chains and trigonometric Ruijsenaars-Schneider models. Finally we study a limit which produces a K-theoretic version of results of Givental and Kim, connecting quantum geometry of flag varieties and Toda lattice.





2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yuechen Jia ◽  
Yu Lu ◽  
Miao Yu ◽  
Hasi Gegen

The 2 + 1 -dimensional elliptic Toda equation is a higher dimensional generalization of the Toda lattice and also a discrete version of the Kadomtsev-Petviashvili-1 (KP1) equation. In this paper, we derive the M -breather solution in the determinant form for the 2 + 1 -dimensional elliptic Toda equation via Bäcklund transformation and nonlinear superposition formulae. The lump solutions of the 2 + 1 -dimensional elliptic Toda equation are derived from the breather solutions through the degeneration process. Hybrid solutions composed of two line solitons and one breather/lump are constructed. By introducing the velocity resonance to the N -soliton solution, it is found that the 2 + 1 -dimensional elliptic Toda equation possesses line soliton molecules, breather-soliton molecules, and breather molecules. Based on the N -soliton solution, we also demonstrate the interactions between a soliton/breather-soliton molecule and a lump and the interaction between a soliton molecule and a breather. It is interesting to find that the KP1 equation does not possess a line soliton molecule, but its discrete version—the 2 + 1 -dimensional elliptic Toda equation—exhibits line soliton molecules.



2021 ◽  
Vol 207 (3) ◽  
pp. 701-712
Author(s):  
Xiaojuan Duan ◽  
Chuanzhong Li ◽  
Jing Ping Wang
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document