Simple approximations to the expected waiting time for a cluster of any given size, for point processes

1983 ◽  
Vol 15 (1) ◽  
pp. 21-38 ◽  
Author(s):  
Ester Samuel-Cahn

For point processes, such that the interarrival times of points are independently and identically distributed, let T(L, m) denote the time until at least points cluster within an interval of length at most L. Let τ (L, m) + 1 be the total number of points observed until the above happens. Simple approximations of Eτ (L, m) and ET(L, m) are derived, as well as lower and upper bounds for their value. Approximations to the variances are also given. In particular the Poisson, Bernoulli and compound Poisson processes are discussed in detail. Some numerical tables are included.

1983 ◽  
Vol 15 (01) ◽  
pp. 21-38 ◽  
Author(s):  
Ester Samuel-Cahn

For point processes, such that the interarrival times of points are independently and identically distributed, let T(L, m) denote the time until at least points cluster within an interval of length at most L. Let τ (L, m) + 1 be the total number of points observed until the above happens. Simple approximations of Eτ (L, m) and ET(L, m) are derived, as well as lower and upper bounds for their value. Approximations to the variances are also given. In particular the Poisson, Bernoulli and compound Poisson processes are discussed in detail. Some numerical tables are included.


1983 ◽  
Vol 20 (2) ◽  
pp. 338-348 ◽  
Author(s):  
C. Park ◽  
J. A. Beekman

Let {W(t), 0 ≦ t < ∞} be the standard Wiener process. The probabilities of the type P[sup0≦t ≦ TW(t) − f(t) ≧ 0] have been extensively studied when f(t) is a deterministic function. This paper discusses the probabilities of the type P{sup0≦t ≦ TW(t) − [f(t) + X(t)] ≧ 0} when X(t) is a stochastic process. By taking compound Poisson processes as X(t), the paper gives procedures for finding such probabilities.


Sign in / Sign up

Export Citation Format

Share Document