binomial type
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 76 (4) ◽  
Author(s):  
Żywilla Fechner ◽  
Eszter Gselmann ◽  
László Székelyhidi

AbstractIn this paper generalized moment functions are considered. They are closely related to the well-known functions of binomial type which have been investigated on various abstract structures. The main purpose of this work is to prove characterization theorems for generalized moment functions on commutative groups. At the beginning a multivariate characterization of moment functions defined on a commutative group is given. Next the notion of generalized moment functions of higher rank is introduced and some basic properties on groups are listed. The characterization of exponential polynomials by means of complete (exponential) Bell polynomials is given. The main result is the description of generalized moment functions of higher rank defined on a commutative group as the product of an exponential and composition of multivariate Bell polynomial and an additive function. Furthermore, corollaries for generalized moment function of rank one are also stated. At the end of the paper some possible directions of further research are discussed.


Risks ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 97
Author(s):  
George Tzougas

This article presents the Poisson-Inverse Gamma regression model with varying dispersion for approximating heavy-tailed and overdispersed claim counts. Our main contribution is that we develop an Expectation-Maximization (EM) type algorithm for maximum likelihood (ML) estimation of the Poisson-Inverse Gamma regression model with varying dispersion. The empirical analysis examines a portfolio of motor insurance data in order to investigate the efficiency of the proposed algorithm. Finally, both the a priori and a posteriori, or Bonus-Malus, premium rates that are determined by the Poisson-Inverse Gamma model are compared to those that result from the classic Negative Binomial Type I and the Poisson-Inverse Gaussian distributions with regression structures for their mean and dispersion parameters.


2019 ◽  
Vol 11 (2) ◽  
pp. 387-418
Author(s):  
Miguel A. Méndez ◽  
José L. Ramírez

Abstract In the present article we introduce two new combinatorial interpretations of the r-Whitney numbers of the second kind obtained from the combinatorics of the differential operators associated to the grammar G := {y → yxm, x → x}. By specializing m = 1 we obtain also a new combinatorial interpretation of the r-Stirling numbers of the second kind. Again, by specializing to the case r = 0 we introduce a new generalization of the Stirling number of the second kind and through them a binomial type family of polynomials that generalizes Touchard’s polynomials. Moreover, we recover several known identities involving the r-Dowling polynomials and the r-Whitney numbers using the combinatorial differential calculus. We construct a family of posets that generalize the classical Dowling lattices. The r-Withney numbers of the first kind are obtained as the sum of the Möbius function over elements of a given rank. Finally, we prove that the r-Dowling polynomials are a Sheffer family relative to the generalized Touchard binomial family, study their umbral inverses, and introduce [m]-Stirling numbers of the first kind. From the relation between umbral calculus and the Riordan matrices we give several new combinatorial identities


Author(s):  
Robert A. Rigby ◽  
Mikis D. Stasinopoulos ◽  
Gillian Z. Heller ◽  
Fernanda De Bastiani
Keyword(s):  

Author(s):  
Robert A. Rigby ◽  
Mikis D. Stasinopoulos ◽  
Gillian Z. Heller ◽  
Fernanda De Bastiani
Keyword(s):  

2019 ◽  
Vol 28 (1) ◽  
pp. 91-108
Author(s):  
José L. Ramirez ◽  
Mark Shattuck

Abstract We consider a generalization of the problem of counting ternary words of a given length which was recently investigated by Koshy and Grimaldi [10]. In particular, we use finite automata and ordinary generating functions in deriving a k-ary generalization. This approach allows us to obtain a general setting in which to study this problem over a k-ary language. The corresponding class of n-letter k-ary words is seen to be equinumerous with the closed walks of length n − 1 on the complete graph for k vertices as well as a restricted subset of colored square-and-domino tilings of the same length. A further polynomial extension of the k-ary case is introduced and its basic properties deduced. As a consequence, one obtains some apparently new binomial-type identities via a combinatorial argument.


2019 ◽  
Vol 36 (4) ◽  
pp. 620-652 ◽  
Author(s):  
Nataliya Chukhrova ◽  
Arne Johannssen

PurposeIn acceptance sampling, the hypergeometric operating characteristic (OC) function (so called type-A OC) is used to be approximated by the binomial or Poisson OC function, which actually reduce computational effort, but do not provide suffcient approximation results. The purpose of this paper is to examine binomial- and Poisson-type approximations to the hypergeometric distribution, in order to find a simple but accurate approximation that can be successfully applied in acceptance sampling.Design/methodology/approachThe authors present a new binomial-type approximation for the type-A OC function, and derive its properties. Further, the authors compare this approximation via an extensive numerical study with other common approximations in terms of variation distance and relative efficiency under various conditions on the parameters including limiting cases.FindingsThe introduced approximation generates best numerical results over a wide range of parameter values, and ensures arithmetic simplicity of the binomial distribution and high accuracy to meet requirements regarding acceptance sampling problems. Additionally, it can considerably reduce the computational effort in relation to the type-A OC function and therefore is strongly recommended for calculating sampling plans.Originality/valueThe newly presented approximation provides a remarkably close fit to the type-A OC function, is discrete and needs no correction for continuity, and is skewed in the same direction by roughly the same amount as the exact OC. Due to less factorials, this OC in general involves lower powers than the type-A OC function. Moreover, the binomial-type approximation is easy to fit to the conventional statistical computing packages.


2018 ◽  
Vol 22 (4) ◽  
pp. 1457-1479
Author(s):  
Sotiris Bersimis ◽  
Kostas Triantafyllopoulos

AbstractAir pollution poses a major problem in modern cities, as it has a significant effect in poor quality of life of the general population. Many recent studies link excess levels of major air pollutants with health-related incidents, in particular respiratory-related diseases. This introduces the need for city pollution on-line monitoring to enable quick identification of deviations from “normal” pollution levels, and providing useful information to public authorities for public protection. This article considers dynamic monitoring of pollution data (output of multivariate processes) using Kalman filters and multivariate statistical process control techniques. A state space model is used to define the in-control process dynamics, involving trend and seasonality. Distribution-free monitoring of the residuals of that model is proposed, based on binomial-type and generalised binomial-type statistics as well as on rank statistics. We discuss the general problem of detecting a change in pollutant levels that affects either the entire city (globally) or specific sub-areas (locally). The proposed methodology is illustrated using data, consisting of ozone, nitrogen oxides and sulfur dioxide collected over the air-quality monitoring network of Athens.


Sign in / Sign up

Export Citation Format

Share Document