charged particles
Recently Published Documents


TOTAL DOCUMENTS

5960
(FIVE YEARS 713)

H-INDEX

113
(FIVE YEARS 6)

2022 ◽  
Vol 9 (1) ◽  
pp. 40
Author(s):  
Benjamin Li ◽  
Yu Feng

Various factors and challenges are involved in efficiently delivering drugs using nasal sprays to the olfactory region to treat central nervous system diseases. In this study, computational fluid dynamics was used to simulate nasal drug delivery to (1) examine effects on drug deposition when various external magnetic fields are applied to charged particles, (2) comprehensively study effects of multiple parameters (i.e., particle aerodynamic diameter; injection velocity magnitude, angle, and position; magnetic force strength and direction), and (3) determine how to achieve the optimal delivery efficiency to the olfactory epithelium. The Reynolds-averaged Navier–Stokes equations governed airflow, with a realistic inhalation waveform implemented at the nostrils. Particle trajectories were modeled using the one-way coupled Euler–Lagrange model. A current-carrying wire generated a magnetic field to apply force on charged particles and direct them to the olfactory region. Once drug particles reached the olfactory region, their diffusion through mucus to the epithelium was calculated analytically. Particle aerodynamic diameter, injection position, and magnetic field strength were found to be interconnected in their effects on delivery efficiency. Specific combinations of these parameters achieved over 65-fold higher drug delivery efficiency compared with uniform injections with no magnetic fields. The insight gained suggests how to integrate these factors to achieve the optimal efficiency.


2022 ◽  
Vol 14 (4) ◽  
pp. 35-42
Author(s):  
V. Zolnikov ◽  
F. Makarenko ◽  
I. Zhuravleva ◽  
Elena Popova ◽  
Yu. Gridnev ◽  
...  

The paper considers circuit engineering methods for protecting the electronic component base from the effects of heavy charged particles. One of the main methods is to increase the capacity of the device, which leads to an increase in the capacity of diffusion regions and a decrease in the frequency of single events. The structure of a capacitor is shown, which is connected to various nodes of the circuit to increase the sensitivity of the capacitance of the node. The article focuses on the method of using active RC circuits in the feedback circuit of a storage device cell. The advantages and disadvantages of the methods of using a storage device cell with internal redundancy are noted. The paper shows that the use of circuit engineering methods will provide the required level of fault and fault tolerance to the effects of heavy charged particles.


2022 ◽  
Vol 14 (4) ◽  
pp. 51-58
Author(s):  
A. Zolnikova ◽  
Svetlana Evdokimova ◽  
O. Oksyuta ◽  
Natal'ya Panina ◽  
Maksim Solodilov

The paper considers methods of increasing the durability of radio-electronic equipment in space, namely, methods of detecting and correcting errors during the action of the HCP. Currently, redundancy methods are used to ensure durability, when two or three processors work in parallel in the system, and a special node compares the results of their work. If the results do not match, an error signal will be generated, and the system will begin to perform actions to correct it. The article describes and classifies the main circuit, structural-functional, algorithmic methods for detecting and correcting errors. It is shown that circuit solutions lead to an increase in the crystal area. Therefore, the problem arises of ensuring radiation resistance with a minimum increase in the crystal area.


2022 ◽  
Vol 14 (4) ◽  
pp. 43-51
Author(s):  
V. Zolnikov ◽  
A. Yagodkin ◽  
V. Antsiferova ◽  
Svetlana Evdokimova ◽  
Tatyana Skvortsova ◽  
...  

The work is devoted to the study of the sensitivity of the electronic component base (ECB) to the effects of heavy charged particles. At the same time, the degree of sensitivity is distinguished depending on the functional group of ECB products to the effects of ionization radiation from outer space and on the design and technological design of ECB products. The paper presents the characteristics and conditions for the use of ECB in the radio-electronic equipment of outer space to ensure minimal sensitivity to the effects of ionization radiation and to the thyristor effect. After the sensitivity analysis of ECB products is carried out, a preliminary selection of ECB is performed, requiring testing. The article discusses the criteria for determining the ECB that requires testing and is possible to use without testing. The methods of increasing the durability of radio-electronic equipment of space equipment and the directions of optimization of the methodology of analysis of ECB lists are determined.


Author(s):  
Samuel Moss

This is an introduction to a new concept of quantum gravity that seamlessly merges General Relativity to the Standard Model. Based upon a novel patent-pending magnetic confinement method that was designed to emulate how our sun confines and rotates charged particles about a singularity; this confinement method uses a collective of off-centered confinement coils that are directed to curve rotating charged particles about a singularity in a way that allows charged particles to relatively accelerate from geodesic deviation. With this confinement method, the subtle Relative Accelerated Energy (RAE) from deviating charged particles has the capability to be focused and exponentially increased relative to the mass-energy of a closed system; which allows for a simple pathway to understand how black holes operate at their singularities. While in the pursuit of proving that this novel method of confinement mimics how our sun operates; I was also able to develop a logical explanation of how our sun reverses its magnetic poles and cycles using the core principles of Michael Faraday. If this concept of quantum gravity is correct, there is a simple explanation for the additional observed gravitational force about the galaxies that are said to obtain dark matter. In short, this theory of quantum gravity has the potential to fully discredit the existence of theorized dark matter with a simple experiment.


Author(s):  
А.Ю. Маслов ◽  
О.В. Прошина

Abstract The specific features of the interaction of charged particles with polar optical phonons have been studied theoretically for quantum wells with the barriers that are asymmetric in their dielectric properties. It is shown that the interaction with interface phonon modes makes the greatest contribution in narrow quantum wells. The parameters of the electron-phonon interaction were found for the cases of different values of the phonon frequencies in the barrier materials. It turned out that a significant (by almost an order of magnitude) change in the parameters of the electron-phonon interaction can occur in such structures. This makes it possible, in principle, to trace the transition from weak to strong interactions in quantum wells of the same type but with different compositions of barrier materials. The conditions are found under which an enhancement of the electron-phonon interaction is possible in an asymmetric structure in comparison with a symmetric one with the barriers of the same composition.


Sign in / Sign up

Export Citation Format

Share Document