Point processes, regular variation and weak convergence

1986 ◽  
Vol 18 (1) ◽  
pp. 66-138 ◽  
Author(s):  
Sidney I. Resnick

A method is reviewed for proving weak convergence in a function-space setting when regular variation is a sufficient condition. Point processes and weak convergence techniques involving continuity arguments play a central role. The method is dimensionless and holds computations to a minimum. Many applications of the methods to processes derived from sums and maxima are given.

1986 ◽  
Vol 18 (01) ◽  
pp. 66-138 ◽  
Author(s):  
Sidney I. Resnick

A method is reviewed for proving weak convergence in a function-space setting when regular variation is a sufficient condition. Point processes and weak convergence techniques involving continuity arguments play a central role. The method is dimensionless and holds computations to a minimum. Many applications of the methods to processes derived from sums and maxima are given.


1972 ◽  
Vol 9 (2) ◽  
pp. 462-465 ◽  
Author(s):  
Ward Whitt

To obtain a limit with independent components in the superposition of m-dimensional point processes, a condition corresponding to asymptotic independence must be included. When this condition is relaxed, convergence to limits with dependent components is possible. In either case, convergence of finite distributions alone implies tightness and thus weak convergence in the function space D[0, ∞) × … × D[0, ∞).


1972 ◽  
Vol 9 (02) ◽  
pp. 462-465
Author(s):  
Ward Whitt

To obtain a limit with independent components in the superposition of m-dimensional point processes, a condition corresponding to asymptotic independence must be included. When this condition is relaxed, convergence to limits with dependent components is possible. In either case, convergence of finite distributions alone implies tightness and thus weak convergence in the function space D[0, ∞) × … × D[0, ∞).


1984 ◽  
Vol 21 (03) ◽  
pp. 654-660 ◽  
Author(s):  
Sujit K. Basu ◽  
Manish C. Bhattacharjee

We show that the HNBUE family of life distributions is closed under weak convergence and that weak convergence within this family is equivalent to convergence of each moment sequence of positive order to the corresponding moment of the limiting distribution. A necessary and sufficient condition for weak convergence to the exponential distribution is given, based on a new characterization of exponentials within the HNBUE family of life distributions.


1996 ◽  
Vol 33 (2) ◽  
pp. 420-426 ◽  
Author(s):  
J. van den Berg

For (marked) Poisson point processes we give, for increasing events, a new proof of the analog of the BK inequality. In contrast to other proofs, which use weak-convergence arguments, our proof is ‘direct' and requires no extra topological conditions on the events. Apart from some well-known properties of Poisson point processes, the proof is self-contained.


2001 ◽  
Vol 38 (2) ◽  
pp. 570-581 ◽  
Author(s):  
Rafał Kulik ◽  
Ryszard Szekli

Daley and Vesilo (1997) introduced long-range count dependence (LRcD) for stationary point processes on the real line as a natural augmentation of the classical long-range dependence of the corresponding interpoint sequence. They studied LRcD for some renewal processes and some output processes of queueing systems, continuing the previous research on such processes of Daley (1968), (1975). Subsequently, Daley (1999) showed that a necessary and sufficient condition for a stationary renewal process to be LRcD is that under its Palm measure the generic lifetime distribution has infinite second moment. We show that point processes dominating, in a sense of stochastic ordering, LRcD point processes are LRcD, and as a corollary we obtain that for arbitrary stationary point processes with finite intensity a sufficient condition for LRcD is that under Palm measure the interpoint distances are positively dependent (associated) with infinite second moment. We give many examples of LRcD point processes, among them exchangeable, cluster, moving average, Wold, semi-Markov processes and some examples of LRcD point processes with finite second Palm moment of interpoint distances. These examples show that, in general, the condition of infiniteness of the second moment is not necessary for LRcD. It is an open question whether the infinite second Palm moment of interpoint distances suffices to make a stationary point process LRcD.


2007 ◽  
Vol 49 (3) ◽  
pp. 431-447 ◽  
Author(s):  
MASATO KIKUCHI

AbstractLet X be a Banach function space over a nonatomic probability space. We investigate certain martingale inequalities in X that generalize those studied by A. M. Garsia. We give necessary and sufficient conditions on X for the inequalities to be valid.


Sign in / Sign up

Export Citation Format

Share Document