Single-server queues with impatient customers

1984 ◽  
Vol 16 (4) ◽  
pp. 887-905 ◽  
Author(s):  
F. Baccelli ◽  
P. Boyer ◽  
G. Hebuterne

We consider a single-server queueing system in which a customer gives up whenever his waiting time is larger than a random threshold, his patience time. In the case of a GI/GI/1 queue with i.i.d. patience times, we establish the extensions of the classical GI/GI/1 formulae concerning the stability condition and the relation between actual and virtual waiting-time distribution functions. We also prove that these last two distribution functions coincide in the case of a Poisson input process and determine their common law.

1984 ◽  
Vol 16 (04) ◽  
pp. 887-905 ◽  
Author(s):  
F. Baccelli ◽  
P. Boyer ◽  
G. Hebuterne

We consider a single-server queueing system in which a customer gives up whenever his waiting time is larger than a random threshold, his patience time. In the case of a GI/GI/1 queue with i.i.d. patience times, we establish the extensions of the classical GI/GI/1 formulae concerning the stability condition and the relation between actual and virtual waiting-time distribution functions. We also prove that these last two distribution functions coincide in the case of a Poisson input process and determine their common law.


1976 ◽  
Vol 13 (03) ◽  
pp. 619-622 ◽  
Author(s):  
J. W. Cohen

The queueing system GI/G/1 with group arrivals and individual service of the customers is considered. For the stable situation the limiting distribution of the waiting time distribution of the kth served customer for k → ∞ is derived by using the theory of regenerative processes. It is assumed that the group sizes are i.i.d. variables of which the distribution is aperiodic. The relation between this limiting distribution and the stationary distribution of the virtual waiting time is derived.


1976 ◽  
Vol 13 (3) ◽  
pp. 619-622 ◽  
Author(s):  
J. W. Cohen

The queueing system GI/G/1 with group arrivals and individual service of the customers is considered. For the stable situation the limiting distribution of the waiting time distribution of the kth served customer for k → ∞ is derived by using the theory of regenerative processes. It is assumed that the group sizes are i.i.d. variables of which the distribution is aperiodic. The relation between this limiting distribution and the stationary distribution of the virtual waiting time is derived.


1973 ◽  
Vol 10 (2) ◽  
pp. 343-353 ◽  
Author(s):  
J. W. Cohen

For the distribution functions of the stationary actual waiting time and of the stationary virtual waiting time of the GI/G/l queueing system it is shown that the tails vary regularly at infinity if and only if the tail of the service time distribution varies regularly at infinity.For sn the sum of n i.i.d. variables xi, i = 1, …, n it is shown that if E {x1} < 0 then the distribution of sup, s1s2, …] has a regularly varying tail at + ∞ if the tail of the distribution of x1 varies regularly at infinity and conversely, moreover varies regularly at + ∞.In the appendix a lemma and its proof are given providing necessary and sufficient conditions for regular variation of the tail of a compound Poisson distribution.


1974 ◽  
Vol 11 (04) ◽  
pp. 849-852 ◽  
Author(s):  
Austin J. Lemoine

This paper provides simple proofs of two standard results for the stable GI/G/1 queue on the structure of the distribution functions of the stationary virtual waiting time and the stationary queue-length Our argument is applicable to more general single server systems than the queue GI/G/1.


1988 ◽  
Vol 11 (3) ◽  
pp. 589-597
Author(s):  
A. Ghosal ◽  
S. Madan

This paper brings out relations among the moments of various orders of the waiting time of the1st customer and a randomly selected customer of an arrival group for bulk arrivals queueing models, and as well as moments of the waiting time (in queue) forM/G/1queueing system. A numerical study of these relations has been developed in order to find the(β1,β2)measures of waiting time distribution in a comutable form. On the basis of these measures one can look into the nature of waiting time distribution of bulk arrival queues and the single serverM/G/1queue.


1974 ◽  
Vol 11 (4) ◽  
pp. 849-852 ◽  
Author(s):  
Austin J. Lemoine

This paper provides simple proofs of two standard results for the stable GI/G/1 queue on the structure of the distribution functions of the stationary virtual waiting time and the stationary queue-length Our argument is applicable to more general single server systems than the queue GI/G/1.


1964 ◽  
Vol 4 (4) ◽  
pp. 489-505 ◽  
Author(s):  
D. J. Daley

SummaryThe paper considers the queueing system GI/G/1 with a type of customer impatience, namely, that the total queueing-time is uniformly limited. Using Lindiley's approach [10], an integral equation for the limiting waiting- time distribution is derived, and this is solved explicitly for M/G/1 using an expansion of the Pollaczek-Khintchine formula. It is also solved, in principle for Ej/G/l, and explicitly for Ej/Ek/l. A duality noted between GIA(x)/GB(x)/l and GIB(x)/GA(x)/l relates solutions for GI/Ek/l to Ek/G/l. Finally the equation for the busy period in GI/G/l is derived and related to the no-customer-loss distribution and dual distributions.


1974 ◽  
Vol 11 (03) ◽  
pp. 612-617 ◽  
Author(s):  
Lajos Takács

The limiting distributions of the actual waiting time and the virtual waiting time are determined for a single-server queue with Poisson input and general service times in the case where there are two types of services and no customer can stay in the system longer than an interval of length m.


1971 ◽  
Vol 8 (3) ◽  
pp. 494-507 ◽  
Author(s):  
E. K. Kyprianou

We consider a single server queueing system M/G/1 in which customers arrive in a Poisson process with mean λt, and the service time has distribution dB(t), 0 < t < ∞. Let W(t) be the virtual waiting time process, i.e., the time that a potential customer arriving at the queueing system at time t would have to wait before beginning his service. We also let the random variable denote the first busy period initiated by a waiting time u at time t = 0.


Sign in / Sign up

Export Citation Format

Share Document