stationary queue length
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 0)

Author(s):  
Sonali Thakur ◽  
Anamika Jain ◽  
Madhu Jain

In this paper, we investigate the M/M/1/N single server finite capacity Markovian queueing model with operational vacation and impatient behavior of the customers. To recover the server broken down during a busy period, M-threshold recovery policy along with set-up is used. Using the inflow and outflow transition rates, the state probabilities equations for different system states are constructed. For computing the stationary queue length, matrix-geometric analytic is performed. The sensitivity analysis is carried for the validation of the system performance measures. To examine the scope of the adaptive neuro-fuzzy inference system (ANFIS), computational results are presented using matric-geometric and ANFIS approaches.


2021 ◽  
Vol 36 ◽  
pp. 04001
Author(s):  
Siew Khew Koh ◽  
Ching Herny Chin ◽  
Yi Fei Tan ◽  
Tan Ching Ng

A single-server queueing system with negative customers is considered in this paper. One positive customer will be removed from the head of the queue if any negative customer is present. The distribution of the interarrival time for the positive customer is assumed to have a rate that tends to a constant as time t tends to infinity. An alternative approach will be proposed to derive a set of equations to find the stationary probabilities. The stationary probabilities will then be used to find the stationary queue length distribution. Numerical examples will be presented and compared to the results found using the analytical method and simulation procedure. The advantage of using the proposed alternative approach will be discussed in this paper.


Author(s):  
Miaomiao Yu

The purpose of this paper is to present an alternative algorithm for computing the stationary queue-length and system-length distributions of a single working vacation queue with renewal input batch arrival and exponential holding times. Here we assume that a group of customers arrives into the system, and they are served in batches not exceeding a specific number b. Because of batch arrival, the transition probability matrix of the corresponding embedded Markov chain for the working vacation queue has no skip-free-to-the-right property. Without considering whether the transition probability matrix has a special block structure, through the calculation of roots of the associated characteristic equation of the generating function of queue-length distribution immediately before batch arrival, we suggest a procedure to obtain the steady-state distributions of the number of customers in the queue at different epochs. Furthermore, we present the analytic results for the sojourn time of an arbitrary customer in a batch by utilizing the queue-length distribution at the pre-arrival epoch. Finally, various examples are provided to show the applicability of the numerical algorithm.


2020 ◽  
Vol 9 (1) ◽  
pp. 63
Author(s):  
Joshua Patterson ◽  
Andrzej Korzeniowski

We use the stationary distribution for the M/M/1 with Unreliable Service and aWorking Vacation (M/M/1/US/WV) given explicitly in (Patterson & Korzeniowski, 2019) to find a decomposition of the stationary queue length N. By applying the distributional form of Little's Law the Laplace-tieltjes Transform of the stationary customer waiting time W is derived. The closed form of the expected value and variance for both N and W is found and the relationship of the expected stationary waiting time as a function of the service failure rate is determined.


2018 ◽  
Vol 6 (4) ◽  
pp. 349-365
Author(s):  
Tao Jiang

Abstract This paper considers a discrete-time Geo/G/1 queue in a multi-phase service environment, where the system is subject to disastrous breakdowns, causing all present customers to leave the system simultaneously. At a failure epoch, the server abandons the service and the system undergoes a repair period. After the system is repaired, it jumps to operative phase i with probability qi, i = 1, 2 ⋯, n. Using the supplementary variable technique, we obtain the distribution for the stationary queue length at the arbitrary epoch, which are then used for the computation of other performance measures. In addition, we derive the expected length of a cycle time, the generating function of the sojourn time of an arbitrary customer, and the generating function of the server’s working time in a cycle. We also give the relationship between the discrete-time queueing system to its continuous-time counterpart. Finally, some examples and numerical results are presented.


2018 ◽  
Vol 7 (2.15) ◽  
pp. 76
Author(s):  
Koh Siew Khew ◽  
Chin Ching Herny ◽  
Tan Yi Fei ◽  
Pooi Ah Hin ◽  
Goh Yong Kheng ◽  
...  

This paper considers a single server queue in which the service time is exponentially distributed and the service station may breakdown according to a Poisson process with the rates γ and γ' in busy period and idle period respectively. Repair will be performed immediately following a breakdown. The repair time is assumed to have an exponential distribution. Let g(t) and G(t) be the probability density function and the cumulative distribution function of the interarrival time respectively. When t tends to infinity, the rate of g(t)/[1 – G(t)] will tend to a constant. A set of equations will be derived for the probabilities of the queue length and the states of the arrival, repair and service processes when the queue is in a stationary state. By solving these equations, numerical results for the stationary queue length distribution can be obtained. 


2018 ◽  
Vol 189 ◽  
pp. 02006 ◽  
Author(s):  
S K Koh ◽  
C H Chin ◽  
Y F Tan ◽  
L E Teoh ◽  
A H Pooi ◽  
...  

In this paper, a single-server queue with negative customers is considered. The arrival of a negative customer will remove one positive customer that is being served, if any is present. An alternative approach will be introduced to derive a set of equations which will be solved to obtain the stationary queue length distribution. We assume that the service time distribution tends to a constant asymptotic rate when time t goes to infinity. This assumption will allow for finding the stationary queue length of queueing systems with non-exponential service time distributions. Numerical examples for gamma distributed service time with fractional value of shape parameter will be presented in which the steady-state distribution of queue length with such service time distributions may not be easily computed by most of the existing analytical methods.


2017 ◽  
Vol 7 (1) ◽  
pp. 125
Author(s):  
Joshua Patterson, Andrzej Korzeniowski

We define a new term ”unreliable service” and construct the corresponding embedded Markov Chain to an M/M/1 queue with so defined protocol. Sufficient conditions for positive recurrence and closed form of stationary distribution are provided. Furthermore, we compute the probability generating function of the stationary queue length and Laplace-Stieltjes transform of the stationary waiting time. In the course of the analysis an interesting decomposition of both the queue length and waiting time has emerged. A number of queueing models can be recovered from our work by taking limits of certain parameters.


Sign in / Sign up

Export Citation Format

Share Document