scholarly journals Distributions with complete monotone derivative and geometric infinite divisibility

1990 ◽  
Vol 22 (3) ◽  
pp. 751-754 ◽  
Author(s):  
R. N. Pillai ◽  
E. Sandhya

It is shown that a distribution with complete monotone derivative is geometrically infinitely divisible and that the class of distributions with complete monotone derivative is a proper subclass of the class of geometrically infinitely divisible distributions.

1990 ◽  
Vol 22 (03) ◽  
pp. 751-754
Author(s):  
R. N. Pillai ◽  
E. Sandhya

It is shown that a distribution with complete monotone derivative is geometrically infinitely divisible and that the class of distributions with complete monotone derivative is a proper subclass of the class of geometrically infinitely divisible distributions.


2016 ◽  
Vol 27 (04) ◽  
pp. 1650037 ◽  
Author(s):  
Mingchu Gao

We study two-faced families of non-commutative random variables having bi-free (additive) infinitely divisible distributions. We prove a limit theorem of the sums of bi-free two-faced families of random variables within a triangular array. As a corollary of our limit theorem, we get Voiculescu’s bi-free central limit theorem. Using the full Fock space operator model, we show that a two-faced pair of random variables has a bi-free (additive) infinitely divisible distribution if and only if its distribution is the limit distribution in our limit theorem. Finally, we characterize the bi-free (additive) infinite divisibility of the distribution of a two-faced pair of random variables in terms of bi-free Levy processes.


2004 ◽  
Vol 41 (02) ◽  
pp. 407-424 ◽  
Author(s):  
Anthony G. Pakes

Known results relating the tail behaviour of a compound Poisson distribution function to that of its Lévy measure when one of them is convolution equivalent are extended to general infinitely divisible distributions. A tail equivalence result is obtained for random sum distributions in which the summands have a two-sided distribution.


2005 ◽  
Vol 57 (1-2) ◽  
pp. 129-136
Author(s):  
R.N. Pillai ◽  
Saji Kumar V. R.

It is shown that the waiting time W in a stationary renewal process generated by X has the form W = X+ Y, with Y non­negative independent of X if and only if X is a geometrically infinitely divisible random variable. This is an improvement over Van Harn and Steutel (1995) where the converse is left unproved .


2004 ◽  
Vol 41 (2) ◽  
pp. 407-424 ◽  
Author(s):  
Anthony G. Pakes

Known results relating the tail behaviour of a compound Poisson distribution function to that of its Lévy measure when one of them is convolution equivalent are extended to general infinitely divisible distributions. A tail equivalence result is obtained for random sum distributions in which the summands have a two-sided distribution.


1979 ◽  
Vol 16 (01) ◽  
pp. 138-153 ◽  
Author(s):  
Prem S. Puri ◽  
Charles M. Goldie

Any probability distribution on [0,∞) can function as the mixing distribution for a Poisson mixture, i.e. a mixture of Poisson distributions. The mixing distribution is called quasi-infinitely divisible (q.i.d.) if it renders the Poisson mixture infinitely divisible, or λ-q.i.d. if it does so after scaling by a factor λ> 0, or ∗-q.i.d. if it is λ-q.i.d. for some λ. These classes of distributions include the infinitely divisible distributions, and each exhibits many of the properties of the latter class but in weakened form. The paper presents the main properties of the classes and the class of Poisson mixtures, including characterisations of membership, relation with cumulants, and closure properties. Examples are given that establish among other things strict inclusions between the classes of mixing distributions.


1979 ◽  
Vol 16 (1) ◽  
pp. 138-153 ◽  
Author(s):  
Prem S. Puri ◽  
Charles M. Goldie

Any probability distribution on [0,∞) can function as the mixing distribution for a Poisson mixture, i.e. a mixture of Poisson distributions. The mixing distribution is called quasi-infinitely divisible (q.i.d.) if it renders the Poisson mixture infinitely divisible, or λ-q.i.d. if it does so after scaling by a factor λ> 0, or ∗-q.i.d. if it is λ-q.i.d. for some λ. These classes of distributions include the infinitely divisible distributions, and each exhibits many of the properties of the latter class but in weakened form. The paper presents the main properties of the classes and the class of Poisson mixtures, including characterisations of membership, relation with cumulants, and closure properties. Examples are given that establish among other things strict inclusions between the classes of mixing distributions.


1967 ◽  
Vol 4 (2) ◽  
pp. 402-405 ◽  
Author(s):  
H. D. Miller

Let X(t) be the position at time t of a particle undergoing a simple symmetrical random walk in continuous time, i.e. the particle starts at the origin at time t = 0 and at times T1, T1 + T2, … it undergoes jumps ξ1, ξ2, …, where the time intervals T1, T2, … between successive jumps are mutually independent random variables each following the exponential density e–t while the jumps, which are independent of the τi, are mutually independent random variables with the distribution . The process X(t) is clearly a Markov process whose state space is the set of all integers.


Sign in / Sign up

Export Citation Format

Share Document