A Tauberian Theorem for the (C, 1)(N, 1/(n + 1)) Summability Method

1970 ◽  
Vol 25 (2) ◽  
pp. 391 ◽  
Author(s):  
H. P. Dikshit
Author(s):  
Ümit Totur

Abstract In this paper we generalize some classical Tauberian theorems for single sequences to double sequences. One-sided Tauberian theorem and generalized Littlewood theorem for (C; 1; 1) summability method are given as corollaries of the main results. Mathematics Subject Classification 2010: 40E05, 40G0


1969 ◽  
Vol 21 ◽  
pp. 740-747 ◽  
Author(s):  
D. Borwein

Suppose throughout that α >0, β is real, and Nis a non-negative integer such that αN+ β> 0. A series of complex terms is said to be summable (B, α,β) to l if, as x→ ∞,where sn= a0 + a1 + … + an.The Borel-type summability method (B, α, β) is regular, i.e., all convergent series are summable (B, α,β) to their natural sums; and (B,1, 1) is the standard Borel exponential method B.Our aim in this paper is to prove the following Tauberian theorem.THEOREM. Iƒ(i) p ≧ – ½, an = o(np), and(ii) is summable (B, α,β) to l, then the series is summable by the Cesaro method(C, 2p + 1) to l.


2015 ◽  
Vol 61 (1) ◽  
pp. 123-128
Author(s):  
Ibrahim Çanak

Abstract We investigate conditions under which Mϕ summability implies Abel summability and give the generalized Littlewood Tauberian theorem for Mϕ summability method.


1992 ◽  
Vol 44 (5) ◽  
pp. 1100-1120 ◽  
Author(s):  
Laying Tam

AbstractOur main result is a Tauberian theorem for the general Euler-Borel summability method. Examples of the method include the discrete Borel, Euler, Meyer- Kônig, Taylor and Karamata methods. Every function/ analytic on the closed unit disk and satisfying some general conditions generates such a method, denoted by (£,ƒ). For instance the function ƒ(z) = exp(z — 1) generates the discrete Borel method. To each such function ƒ corresponds an even positive integer p = p(f).We show that if a sequence (sn)is summable (E,f)and as n→ ∞ m > n, (m— n)n-p(f)→0, then (sn)is convergent. If the Maclaurin coefficients of/ are nonnegative, then p(f) =2. In this case we may replace the condition . This generalizes the Tauberian theorems for Borel summability due to Hardy and Littlewood, and R. Schmidt. We have also found new examples of the method and proved that the exponent —p(f)in the Tauberian condition (*) is the best possible.


1985 ◽  
Vol 8 (4) ◽  
pp. 689-692 ◽  
Author(s):  
J. Connor ◽  
A. K. Snyder

The typical Tauberian theorem asserts that a particular summability method cannot map any divergent member of a given set of sequences into a convergent sequence. These sets of sequences are typically defined by an “order growth” or “gap” condition. We establish that any conull space contains a bounded divergent member of such a set; hence, such sets fail to generate Tauberian theorems for conull spaces.


2012 ◽  
Vol 25 (4) ◽  
pp. 771-774
Author(s):  
İbrahim Çanak ◽  
Ümit Totur

2019 ◽  
Vol 11 (2) ◽  
pp. 251-263
Author(s):  
Naim L. Braha

Abstract Let (pn) and (qn) be any two non-negative real sequences with {{\rm{R}}_{\rm{n}}}: = \sum\limits_{{\rm{k}} = 0}^{\rm{n}} {{{\rm{p}}_{\rm{k}}}{{\rm{q}}_{{\rm{n}} - {\rm{k}}}}} \ne 0\,\,\,\,\left( {{\rm{n}} \in {\rm\mathbb{N}}} \right) With {\rm{E}}_{\rm{n}}^1 − we will denote the Euler summability method. Let (xn) be a sequence of real or complex numbers and set {\rm{N}}_{{\rm{p}},{\rm{q}}}^{\rm{n}}{\rm{E}}_{\rm{n}}^1: = {1 \over {{{\rm{R}}_{\rm{n}}}}}\sum\limits_{{\rm{k}} = 0}^{\rm{n}} {{{\rm{p}}_{\rm{k}}}{{\rm{q}}_{{\rm{n - k}}}}{1 \over {{2^{\rm{k}}}}}\sum\limits_{{\rm{v}} = 0}^{\rm{k}} {\left( {_{\rm{v}}^{\rm{k}}} \right){{\rm{x}}_{\rm{v}}}} } for n ∈ ℕ. In this paper, we present necessary and sufficient conditions under which the existence of the st− limit of (xn) follows from that of {\rm{st - N}}_{{\rm{p}},q}^{\rm{n}}{\rm{E}}_{\rm{n}}^1 − limit of (xn). These conditions are one-sided or two-sided if (xn) is a sequence of real or complex numbers, respectively.


Author(s):  
Bidu Bhusan Jena ◽  
Susanta Kumar Paikray ◽  
Umakanta Misra

We have generalized Littlewood Tauberian theorems for(C,k,r)summability of double sequences by using oscillating behavior and de la Vallée-Poussin mean. Further, the generalization of(C,r)summability from(C,k,r)summability is given as corollaries which were earlier established by the authors.


Sign in / Sign up

Export Citation Format

Share Document