cesàro summability
Recently Published Documents


TOTAL DOCUMENTS

259
(FIVE YEARS 33)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Uğur Ulusu ◽  
Esra Gülle

The main purpose of this paper is introduced the concept of deferred Cesàro mean in the Wijsman sense for double sequences of sets and then presented the concepts of strongly deferred Cesàro summability and deferred statistical convergence in the Wijsman sense for double sequences of sets. Also, investigate the relationships between these concepts and then to prove some theorems associated with the concepts of deferred statistical convergence in the Wijsman sense for double sequences of sets is purposed.


2021 ◽  
Vol 103 (3) ◽  
pp. 4-12
Author(s):  
S. Bitimkhan ◽  
◽  
D.T. Alibieva ◽  

The article is devoted to the problem of absolute Cesaro summability of multiple trigonometric Fourier series. Taking a central place in the theory of Fourier series this problem was developed quite widely in the one-dimensional case and the fundamental results of this theory are set forth in the famous monographs by N.K. Bari, A. Zigmund, R. Edwards, B.S. Kashin and A.A. Saakyan [1–4]. In the case of multiple series, the corresponding theory is not so well developed. The multidimensional case has own specifics and the analogy with the one-dimensional case does not always be unambiguous and obvious. In this article, we obtain sufficient conditions for the absolute summability of multiple Fourier series of the function f ∈ Lq(Is) in terms of partial best approximations of this function. Four theorems are proved and four different sufficient conditions for the |C; β¯|λ-summability of the Fourier series of the function f are obtained. In the first theorem, a sufficient condition for the absolute |C; β¯|λ- summability of the Fourier series of the function f is obtained in terms of the partial best approximation of this function which consists of s conditions, in the case when β1 = ... = βs = 1/q'. Other sufficient conditions are obtained for double Fourier series. Sufficient conditions for the |C; β1; β2|λ-summability of the Fourier series of the function f ∈ Lq(I2) are obtained in the cases β1 = 1/q', −1 < β2 < 1/q'(in the second theorem), 1/q'< β1 < +∞, β2 = 1/q', (in the third theorem), −1 < β1 < 1/q', 1/q' < β2 < +∞ (in the fourth theorem).


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Ferenc Weisz

AbstractWe generalize the classical Lebesgue’s theorem and prove that the $$\ell _1$$ ℓ 1 -Cesàro means of the Fourier series of the multi-dimensional function $$f\in L_1({{\mathbb {T}}}^d)$$ f ∈ L 1 ( T d ) converge to f at each strong $$\omega $$ ω -Lebesgue point.


Author(s):  
Huseyin Bor

In this paper, we have generalized a known theorem dealing with $\varphi-{\mid{C},\alpha,\mid}_k$ summability factors of infinite series to the $\varphi-{\mid{C},\alpha,\beta\mid}_k$ summability method under weaker conditions. Also, some new and known results are obtained.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ferenc Weisz

<p style='text-indent:20px;'>We give four generalizations of the classical Lebesgue's theorem to multi-dimensional functions and Fourier series. We introduce four new concepts of Lebesgue points, the corresponding Hardy-Littlewood type maximal functions and show that almost every point is a Lebesgue point. For four different types of summability and convergences investigated in the literature, we prove that the Cesàro means <inline-formula><tex-math id="M1">\begin{document}$ \sigma_n^{\alpha}f $\end{document}</tex-math></inline-formula> of the Fourier series of a multi-dimensional function converge to <inline-formula><tex-math id="M2">\begin{document}$ f $\end{document}</tex-math></inline-formula> at each Lebesgue point as <inline-formula><tex-math id="M3">\begin{document}$ n\to \infty $\end{document}</tex-math></inline-formula>.</p>


Sign in / Sign up

Export Citation Format

Share Document