On J-Selfadjoint Extensions of J-Symmetric Operators

1980 ◽  
Vol 79 (1) ◽  
pp. 42 ◽  
Author(s):  
Ian Knowles

2005 ◽  
Vol 2005 (7) ◽  
pp. 767-790 ◽  
Author(s):  
I. Parassidis ◽  
P. Tsekrekos

LetA0be a closed, minimal symmetric operator from a Hilbert spaceℍintoℍwith domain not dense inℍ. LetA^also be a correct selfadjoint extension ofA0. The purpose of this paper is (1) to characterize, with the help ofA^, all the correct selfadjoint extensionsBofA0with domain equal toD(A^), (2) to give the solution of their corresponding problems, (3) to find sufficient conditions forBto be positive (definite) whenA^is positive (definite).





1970 ◽  
Vol 22 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Tsuyoshi Ando ◽  
Katsuyoshi Nishio










2019 ◽  
Vol 16 (4) ◽  
pp. 567-587
Author(s):  
Vadim Mogilevskii

Let $A$ be a symmetric linear relation in the Hilbert space $\gH$ with unequal deficiency indices $n_-A <n_+(A)$. A self-adjoint linear relation $\wt A\supset A$ in some Hilbert space $\wt\gH\supset \gH$ is called an (exit space) extension of $A$. We study the compressions $C (\wt A)=P_\gH\wt A\up\gH$ of extensions $\wt A=\wt A^*$. Our main result is a description of compressions $C (\wt A)$ by means of abstract boundary conditions, which are given in terms of a limit value of the Nevanlinna parameter $\tau(\l)$ from the Krein formula for generalized resolvents. We describe also all extensions $\wt A=\wt A^*$ of $A$ with the maximal symmetric compression $C (\wt A)$ and all extensions $\wt A=\wt A^*$ of the second kind in the sense of M.A. Naimark. These results generalize the recent results by A. Dijksma, H. Langer and the author obtained for symmetric operators $A$ with equal deficiency indices $n_+(A)=n_-(A)$.



Sign in / Sign up

Export Citation Format

Share Document