symmetric operators
Recently Published Documents


TOTAL DOCUMENTS

312
(FIVE YEARS 54)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 56 (2) ◽  
pp. 162-175
Author(s):  
M.E. Dudkin ◽  
O. Yu. Dyuzhenkova

The basic principles of the theory of singularly perturbed self-adjoint operatorsare generalized to the case of closed linear operators with non-symmetric perturbation of rank one.Namely, firstly linear closed operators are considered that coincide with each other on a dense set in a Hilbert space.The theory of singularly perturbed self-adjoint operators arose from the need to consider differential expressions in such terms as the Dirac $\delta$-function.Since it is important to consider expressions given not only by symmetric operators, the generalization (transfer) of the basic principles of the theory of singularly perturbed self-adjoint operators in the case of non-symmetric ones is important problem. The main facts of the theory include the definition of a singularly perturbed linear operator and the resolvent formula in the cases of ${\mathcal H}_{-1}$-class and ${\mathcal H}_{-2}$-class.The paper additionally describes the possibility of the appearance a point of the point spectrum and the construction of a perturbation with a predetermined point.In comparison with self-adjoint perturbations, the description of perturbations by non-symmetric terms is unexpected.Namely, in some cases, when the perturbed by a vectors from ${\mathcal H}_{-2}$ operator can be conveniently described by methods of class ${\mathcal H}_{-1}$, that is impossible in the case of symmetric perturbations of a self-adjoint operator. The perturbation of self-adjoint operators in a non-symmetric manner fully fits into the proposed studies.Such operators, for example, generalize models with nonlocal interactions, perturbations of the harmonic oscillator by the $\delta$-potentials, and can be used to study perturbations generated by a delay or an anticipation.


Author(s):  
Alessandro Carotenuto ◽  
Fedele Lizzi ◽  
Flavio Mercati ◽  
Mattia Manfredonia

In this paper, we present a quantization of the functions of spacetime, i.e. a map, analog to Weyl map, which reproduces the [Formula: see text]-Minkowski commutation relations, and it has the desirable properties of mapping square integrable functions into Hilbert–Schmidt operators, as well as real functions into symmetric operators. The map is based on Mellin transform on radial and time coordinates. The map also defines a deformed ∗ product which we discuss with examples.


Author(s):  
Xiangren Chen ◽  
Bohan Yang ◽  
Shouyi Yin ◽  
Shaojun Wei ◽  
Leibo Liu

Number theoretic transform (NTT) is widely utilized to speed up polynomial multiplication, which is the critical computation bottleneck in a lot of cryptographic algorithms like lattice-based post-quantum cryptography (PQC) and homomorphic encryption (HE). One of the tendency for NTT hardware architecture is to support diverse security parameters and meet resource constraints on different computing platforms. Thus flexibility and Area-Time Product (ATP) become two crucial metrics in NTT hardware design. The flexibility of NTT in terms of different vector sizes and moduli can be obtained directly. Whereas the varying strides in memory access of in-place NTT render the design for different radix and number of parallel butterfly units a tough problem. This paper proposes an efficient conflict-free memory mapping scheme that supports the configuration for both multiple parallel butterfly units and arbitrary radix of NTT. Compared to other approaches, this scheme owns broader applicability and facilitates the parallelization of non-radix-2 NTT hardware design. Based on this scheme, we propose a scalable radix-2 and radix-4 NTT multiplication architecture by algorithm-hardware co-design. A dedicated schedule method is leveraged to reduce the number of modular additions/subtractions and modular multiplications in radix-4 butterfly unit by 20% and 33%, respectively. To avoid the bit-reversed cost and save memory footprint in arbitrary radix NTT/INTT, we put forward a general method by rearranging the loop structure and reusing the twiddle factors. The hardware-level optimization is achieved by excavating the symmetric operators in radix-4 butterfly unit, which saves almost 50% hardware resources compared to a straightforward implementation. Through experimental results and theoretical analysis, we point out that the radix-4 NTT with the same number of parallel butterfly units outperforms the radix-2 NTT in terms of area-time performance in the interleaved memory system. This advantage is enlarged when increasing the number of parallel butterfly units. For example, when processing 1024 14-bit points NTT with 8 parallel butterfly units, the ATP of LUT/FF/DSP/BRAM n radix-4 NTT core is approximately 2.2 × /1.2 × /1.1 × /1.9 × less than that of the radix-2 NTT core on a similar FPGA platform.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 256
Author(s):  
Bhagwati Prashad Duggal ◽  
In-Hyoun Kim

For a Hilbert space operator T∈B(H), let LT and RT∈B(B(H)) denote, respectively, the operators of left multiplication and right multiplication by T. For positive integers m and n, let ▵T∗,Tm(I)=(LT∗RT−I)m(I) and δT∗,Tn(I)=(LT∗−RT)m(I). The operator T is said to be (m,n)-isosymmetric if ▵T∗,TmδT∗,Tn(I)=0. Power bounded (m,n)-isosymmetric operators T∈B(H) have an upper triangular matrix representation T=T1T30T2∈B(H1⊕H2) such that T1∈B(H1) is a C0.-operator which satisfies δT1∗,T1n(I|H1)=0 and T2∈B(H2) is a C1.-operator which satisfies AT2=(Vu⊕Vb)|H2A, A=limt→∞T2∗tT2t, Vu is a unitary and Vb is a bilateral shift. If, in particular, T is cohyponormal, then T is the direct sum of a unitary with a C00-contraction.


2021 ◽  
Vol 11 (2) ◽  
pp. 048-052
Author(s):  
Wanjala Victor ◽  
Beatrice Adhiambo Obiero

In this paper, we introduce the class of (BD) operators acting on a complex Hilbert space H. An operator if T ∈ B (H) is said to belong to class (BD) if T * 2 (TD) 2 commutes with (T *TD) 2 equivalently [T * 2 (TD) 2, (T *TD) 2] = 0. We investigate the properties of this class and we also analyze the relation of this class to D-operator and then generalize it to class (nBD) and analyze its relation to the class of n-power D-operator through complex symmetric operators.


Author(s):  
Anna G. Belolipetskaya ◽  
Anton A. Boitsev ◽  
Silvestro Fassari ◽  
Igor Y. Popov

In this paper, a model of 3D Helmholtz resonator with two close point-like windows is considered. The Dirichlet condition is assumed at the boundary. The model is based on the theory of self-adjoint extensions of symmetric operators in Pontryagin space. The model is explicitly solvable and allows one to obtain the equation for resonances (quasi-eigenvalues) in an explicit form. A proper choice of the model parameter leads to the coincidence of the model solution with the main term of the asymptotics (in the window width) of the realistic solution, corresponding to small windows. A regularization is suggested to obtain a realistic limiting result for two merging windows.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Rabha W. Ibrahim ◽  
Ibtisam Aldawish

AbstractSymmetric operators have benefited in different fields not only in mathematics but also in other sciences. They appeared in the studies of boundary value problems and spectral theory. In this note, we present a new symmetric differential operator associated with a special class of meromorphically multivalent functions in the punctured unit disk. This study explores some of its geometric properties. We consider a new class of analytic functions employing the suggested symmetric differential operator.


2021 ◽  
Vol 18 (3) ◽  
Author(s):  
Pietro Aiena ◽  
Fabio Burderi ◽  
Salvatore Triolo

AbstractIn this paper, we study some local spectral properties of operators having form JTJ, where J is a conjugation on a Hilbert space H and $$T\in L(H)$$ T ∈ L ( H ) . We also study the relationship between the quasi-nilpotent part of the adjoint $$T^*$$ T ∗ and the analytic core K(T) in the case of decomposable complex symmetric operators. In the last part we consider Weyl type theorems for triangular operator matrices for which one of the entries has form JTJ, or has form $$JT^*J$$ J T ∗ J . The theory is exemplified in some concrete cases.


Sign in / Sign up

Export Citation Format

Share Document