Some Remarks on q-Beta Integral

1982 ◽  
Vol 85 (3) ◽  
pp. 360 ◽  
Author(s):  
W. A. Al-Salam ◽  
A. Verma
Keyword(s):  

2010 ◽  
Vol 365 (2) ◽  
pp. 653-658 ◽  
Author(s):  
Mingjin Wang
Keyword(s):  


1981 ◽  
Vol 32 (3) ◽  
pp. 255-266 ◽  
Author(s):  
RICHARD ASKEY
Keyword(s):  








Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 118
Author(s):  
Gao-Wen Xi ◽  
Qiu-Ming Luo

In 1915, Ramanujan stated the following formula ∫ 0 ∞ t x - 1 ( - a t ; q ) ∞ ( - t ; q ) ∞ d t = π sin π x ( q 1 - x , a ; q ) ∞ ( q , a q - x ; q ) ∞ , where 0 < q < 1 , x > 0 , and 0 < a < q x . The above formula is called Ramanujan’s beta integral. In this paper, by using q-exponential operator, we further extend Ramanujan’s beta integral. As some applications, we obtain some new integral formulas of Ramanujan and also show some new representation with gamma functions and q-gamma functions.



1982 ◽  
Vol 85 (3) ◽  
pp. 360-360
Author(s):  
W. A. Al-Salam ◽  
A. Verma
Keyword(s):  


2013 ◽  
Vol 68 (6) ◽  
pp. 1027-1072 ◽  
Author(s):  
S È Derkachev ◽  
V P Spiridonov


2014 ◽  
Vol 236 ◽  
pp. 19-26 ◽  
Author(s):  
Vijay Gupta ◽  
Themistocles M. Rassias ◽  
Rani Yadav


Sign in / Sign up

Export Citation Format

Share Document