A Generalization of the Isoperimetric Inequality on S 2 and Flat Tori in S 3

1994 ◽  
Vol 120 (2) ◽  
pp. 553
Author(s):  
Kazuyuki Enomoto

2015 ◽  
Vol 59 (3) ◽  
pp. 773-793
Author(s):  
Braxton Osting ◽  
Jeremy Marzuola ◽  
Elena Cherkaev




Author(s):  
Anna Gori ◽  
Alberto Verjovsky ◽  
Fabio Vlacci

AbstractMotivated by the theory of complex multiplication of abelian varieties, in this paper we study the conformality classes of flat tori in $${\mathbb {R}}^{n}$$ R n and investigate criteria to determine whether a n-dimensional flat torus has non trivial (i.e. bigger than $${\mathbb {Z}}^{*}={\mathbb {Z}}{\setminus }\{0\}$$ Z ∗ = Z \ { 0 } ) semigroup of conformal endomorphisms (the analogs of isogenies for abelian varieties). We then exhibit several geometric constructions of tori with this property and study the class of conformally equivalent lattices in order to describe the moduli space of the corresponding tori.



1988 ◽  
Vol 116 (2) ◽  
pp. 177-183 ◽  
Author(s):  
H. Schenk
Keyword(s):  




2006 ◽  
Vol 165 (1) ◽  
pp. 115-151 ◽  
Author(s):  
Peter Sarnak ◽  
Andreas Strömbergsson
Keyword(s):  


2003 ◽  
Vol 111 (1) ◽  
pp. 97-104
Author(s):  
Thorsten Thies


2005 ◽  
Vol 340 (5) ◽  
pp. 347-352 ◽  
Author(s):  
François Hamel ◽  
Nikolai Nadirashvili ◽  
Emmanuel Russ


2017 ◽  
Vol 27 (6) ◽  
pp. 1289-1366
Author(s):  
Selim Ghazouani ◽  
Luc Pirio
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document