Minima of Epstein’s Zeta function and heights of flat tori

2006 ◽  
Vol 165 (1) ◽  
pp. 115-151 ◽  
Author(s):  
Peter Sarnak ◽  
Andreas Strömbergsson
Keyword(s):  
2015 ◽  
Vol 4 (4) ◽  
pp. 28-33
Author(s):  
Dr. T. Ram Reddy ◽  
◽  
R. Bharavi Sharma ◽  
K. Rajya Lakshmi ◽  
◽  
...  

2019 ◽  
Vol 210 (12) ◽  
pp. 1753-1773 ◽  
Author(s):  
A. Laurinčikas ◽  
J. Petuškinaitė

2021 ◽  
Vol 71 (1) ◽  
pp. 251-263
Author(s):  
Guillermo Mantilla-Soler

Abstract Let L be a number field. For a given prime p, we define integers α p L $ \alpha_{p}^{L} $ and β p L $ \beta_{p}^{L} $ with some interesting arithmetic properties. For instance, β p L $ \beta_{p}^{L} $ is equal to 1 whenever p does not ramify in L and α p L $ \alpha_{p}^{L} $ is divisible by p whenever p is wildly ramified in L. The aforementioned properties, although interesting, follow easily from definitions; however a more interesting application of these invariants is the fact that they completely characterize the Dedekind zeta function of L. Moreover, if the residue class mod p of α p L $ \alpha_{p}^{L} $ is not zero for all p then such residues determine the genus of the integral trace.


2021 ◽  
Vol 344 (7) ◽  
pp. 112412
Author(s):  
Norio Konno ◽  
Iwao Sato ◽  
Etsuo Segawa

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
WonTae Hwang ◽  
Kyunghwan Song

Abstract We prove that the integer part of the reciprocal of the tail of $\zeta (s)$ ζ ( s ) at a rational number $s=\frac{1}{p}$ s = 1 p for any integer with $p \geq 5$ p ≥ 5 or $s=\frac{2}{p}$ s = 2 p for any odd integer with $p \geq 5$ p ≥ 5 can be described essentially as the integer part of an explicit quantity corresponding to it. To deal with the case when $s=\frac{2}{p}$ s = 2 p , we use a result on the finiteness of integral points of certain curves over $\mathbb{Q}$ Q .


Sign in / Sign up

Export Citation Format

Share Document